skip to main content


Title: Matrix effect of sodium compounds on the determination of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy

A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO 2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO 2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elements that can act as tracers to detect a CO 2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr 2+, Ca 2+, K +, and Li + in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na 2CO 3, and Na 2SO 4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K + (30±1 ppb) and Li + (60±2 ppb)more » were in ppb range, while higher LODs were observed for Ca 2+ (0.94±0.14 ppm) and Sr 2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na 2SO 4, whereas the intensities slightly decreased in the presence of Na 2CO 3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO 2 leak.« less
 [1] ;  [2] ;  [1] ;  [3] ;  [1]
  1. National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
  2. National Energy Technology Lab. (NETL), Morgantown, WV (United States)
  3. Carnegie Mellon Univ., Pittsburgh, PA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0003-6935; APOPAI
Accepted Manuscript
Journal Name:
Applied Optics
Additional Journal Information:
Journal Volume: 54; Journal Issue: 19; Journal ID: ISSN 0003-6935
Optical Society of America (OSA)
Research Org:
National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
Sponsoring Org:
USDOE Office of Fossil Energy (FE)
Country of Publication:
United States
36 MATERIALS SCIENCE; spectroscopy; laser induced breakdown; remote sensing and sensors
OSTI Identifier: