skip to main content


Title: Application of X-ray microcomputed tomography in the characterization of irradiated nuclear fuel and material specimens

X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 to 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Microscopy
Additional Journal Information:
Journal Volume: 260; Journal Issue: 2; Journal ID: ISSN 0022-2720
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE), Fuel Cycle Technologies (NE-5)
Country of Publication:
United States
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; X-ray micro-computed tomography; TRISO particle fuel; irradiation; C-C fiber composites; FCM
OSTI Identifier: