DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes

Abstract

Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile-Zn(TFSI) 2 , acetonitrile-Zn(CF 3 SO 3 ) 2 , and propylene carbonate-Zn(TFSI) 2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency) but also provide high anodic stability (up to ~3.8 V vs Zn/Zn 2+ ). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates that the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. The combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes.

Authors:
 [1];  [2];  [2];  [1];  [3];  [1];  [1];  [2];  [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States); Worcester Polytechnic Institute, Worcester, MA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1248374
Alternate Identifier(s):
OSTI ID: 1454452
Grant/Contract Number:  
AC02-06CH11357; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 5; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; nonaqueous electrolyte; electrode/electrolyte interface; reversible deposition; Coulombic efficiency; anodic stability; solvation structure

Citation Formats

Han, Sang -Don, Rajput, Nav Nidhi, Qu, Xiaohui, Pan, Baofei, He, Meinan, Ferrandon, Magali S., Liao, Chen, Persson, Kristin A., and Burrell, Anthony K. Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes. United States: N. p., 2016. Web. doi:10.1021/acsami.5b10024.
Han, Sang -Don, Rajput, Nav Nidhi, Qu, Xiaohui, Pan, Baofei, He, Meinan, Ferrandon, Magali S., Liao, Chen, Persson, Kristin A., & Burrell, Anthony K. Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes. United States. https://doi.org/10.1021/acsami.5b10024
Han, Sang -Don, Rajput, Nav Nidhi, Qu, Xiaohui, Pan, Baofei, He, Meinan, Ferrandon, Magali S., Liao, Chen, Persson, Kristin A., and Burrell, Anthony K. Thu . "Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes". United States. https://doi.org/10.1021/acsami.5b10024. https://www.osti.gov/servlets/purl/1248374.
@article{osti_1248374,
title = {Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes},
author = {Han, Sang -Don and Rajput, Nav Nidhi and Qu, Xiaohui and Pan, Baofei and He, Meinan and Ferrandon, Magali S. and Liao, Chen and Persson, Kristin A. and Burrell, Anthony K.},
abstractNote = {Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile-Zn(TFSI) 2 , acetonitrile-Zn(CF 3 SO 3 ) 2 , and propylene carbonate-Zn(TFSI) 2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency) but also provide high anodic stability (up to ~3.8 V vs Zn/Zn 2+ ). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates that the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. The combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes.},
doi = {10.1021/acsami.5b10024},
journal = {ACS Applied Materials and Interfaces},
number = 5,
volume = 8,
place = {United States},
year = {Thu Jan 14 00:00:00 EST 2016},
month = {Thu Jan 14 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 161 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Materials for electrochemical capacitors
journal, November 2008

  • Simon, Patrice; Gogotsi, Yury
  • Nature Materials, Vol. 7, Issue 11
  • DOI: 10.1038/nmat2297

A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors
journal, September 2008


A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research
journal, April 2011


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


A review of electrolyte materials and compositions for electrochemical supercapacitors
journal, January 2015

  • Zhong, Cheng; Deng, Yida; Hu, Wenbin
  • Chemical Society Reviews, Vol. 44, Issue 21
  • DOI: 10.1039/C5CS00303B

Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond
journal, October 2014

  • Muldoon, John; Bucur, Claudiu B.; Gregory, Thomas
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500049y

Prototype systems for rechargeable magnesium batteries
journal, October 2000

  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries
journal, January 2008

  • Mizrahi, Oren; Amir, Nir; Pollak, Elad
  • Journal of The Electrochemical Society, Vol. 155, Issue 2, p. A103-A109
  • DOI: 10.1149/1.2806175

Structure and compatibility of a magnesium electrolyte with a sulphur cathode
journal, August 2011

  • Kim, Hee Soo; Arthur, Timothy S.; Allred, Gary D.
  • Nature Communications, Vol. 2, Article No. 427
  • DOI: 10.1038/ncomms1435

Rechargeable Mg Batteries with Graphene-like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode
journal, December 2010


Electrolyte roadblocks to a magnesium rechargeable battery
journal, January 2012

  • Muldoon, John; Bucur, Claudiu B.; Oliver, Allen G.
  • Energy & Environmental Science, Vol. 5, Issue 3, p. 5941-5950
  • DOI: 10.1039/c2ee03029b

A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries
journal, January 2012

  • Wang, Fei-fei; Guo, Yong-sheng; Yang, Jun
  • Chemical Communications, Vol. 48, Issue 87, Article No. 10763
  • DOI: 10.1039/c2cc35857c

Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery
journal, August 2012

  • Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.
  • Angewandte Chemie International Edition, Vol. 51, Issue 39, p. 9780-9783
  • DOI: 10.1002/anie.201204913

Corrosion of magnesium electrolytes: chlorides – the culprit
journal, December 2012

  • Muldoon, John; Bucur, Claudiu B.; Oliver, Allen G.
  • Energy Environ. Sci., Vol. 6, Issue 2, p. 482-487
  • DOI: 10.1039/C2EE23686A

Mg rechargeable batteries: an on-going challenge
journal, January 2013

  • Yoo, Hyun Deog; Shterenberg, Ivgeni; Gofer, Yosef
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2265-2279
  • DOI: 10.1039/c3ee40871j

Investigating the Reversibility of in Situ Generated Magnesium Organohaloaluminates for Magnesium Deposition and Dissolution
journal, May 2014

  • Barile, Christopher J.; Spatney, Russell; Zavadil, Kevin R.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 20
  • DOI: 10.1021/jp503506c

Boron Clusters as Highly Stable Magnesium-Battery Electrolytes
journal, February 2014

  • Carter, Tyler J.; Mohtadi, Rana; Arthur, Timothy S.
  • Angewandte Chemie International Edition, Vol. 53, Issue 12
  • DOI: 10.1002/anie.201310317

Why Grignard’s Century Old Nobel Prize Should Spark Your Curiosity
book, January 2015


Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries
journal, March 2014

  • Ha, Se-Young; Lee, Yong-Won; Woo, Sang Won
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 6, p. 4063-4073
  • DOI: 10.1021/am405619v

The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes
journal, January 1991

  • Aurbach, D.
  • Journal of The Electrochemical Society, Vol. 138, Issue 12
  • DOI: 10.1149/1.2085455

Towards a calcium-based rechargeable battery
journal, October 2015

  • Ponrouch, A.; Frontera, C.; Bardé, F.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4462

Transactions and Communications
journal, May 1944

  • Ellingham, H. J. T.
  • Journal of the Society of Chemical Industry, Vol. 63, Issue 5, p. 125-160
  • DOI: 10.1002/jctb.5000630501

Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures
journal, August 2015


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Electrolyte Solvation and Ionic Association
journal, January 2012

  • Seo, Daniel M.; Borodin, Oleg; Han, Sang-Don
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.jes112264

Electrolyte Solvation and Ionic Association II. Acetonitrile-Lithium Salt Mixtures: Highly Dissociated Salts
journal, January 2012

  • Seo, Daniel M.; Borodin, Oleg; Han, Sang-Don
  • Journal of The Electrochemical Society, Vol. 159, Issue 9
  • DOI: 10.1149/2.035209jes

Electrolyte Solvation and Ionic Association III. Acetonitrile-Lithium Salt Mixtures–Transport Properties
journal, January 2013

  • Seo, Daniel M.; Borodin, Oleg; Balogh, Daniel
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.018308jes

Electrolyte Solvation and Ionic Association: IV. Acetonitrile-Lithium Difluoro(oxalato)borate (LiDFOB) Mixtures
journal, January 2013

  • Han, Sang-Don; Borodin, Oleg; Allen, Joshua L.
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.094309jes

Electrolyte Solvation and Ionic Association: V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures
journal, January 2014

  • Han, Sang-Don; Borodin, Oleg; Seo, Daniel M.
  • Journal of The Electrochemical Society, Vol. 161, Issue 14
  • DOI: 10.1149/2.0101414jes

Electrolyte Solvation and Ionic Association: VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited
journal, January 2015

  • Borodin, Oleg; Han, Sang-Don; Daubert, James S.
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0891503jes

The Coupling between Stability and Ion Pair Formation in Magnesium Electrolytes from First-Principles Quantum Mechanics and Classical Molecular Dynamics
journal, February 2015

  • Rajput, Nav Nidhi; Qu, Xiaohui; Sa, Niya
  • Journal of the American Chemical Society, Vol. 137, Issue 9, p. 3411-3420
  • DOI: 10.1021/jacs.5b01004

Reversible Insertion Properties of Zinc Ion into Manganese Dioxide and Its Application for Energy Storage
journal, January 2009

  • Xu, Chengjun; Du, Hongda; Li, Baohua
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 4
  • DOI: 10.1149/1.3065967

Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery
journal, December 2011

  • Xu, Chengjun; Li, Baohua; Du, Hongda
  • Angewandte Chemie International Edition, Vol. 51, Issue 4
  • DOI: 10.1002/anie.201106307

Investigation on Zinc Ion Storage in Alpha Manganese Dioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum
journal, November 2012

  • Xu, Chengjun; Chiang, Sum Wai; Ma, Jun
  • Journal of The Electrochemical Society, Vol. 160, Issue 1
  • DOI: 10.1149/2.008302jes

Todorokite-type MnO2 as a zinc-ion intercalating material
journal, December 2013


Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide
journal, August 2014

  • Lee, Boeun; Yoon, Chong Seung; Lee, Hae Ri
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06066

Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries
journal, January 2015


An Aqueous Zinc-Ion Battery Based on Copper Hexacyanoferrate
journal, December 2014


Molybdenum cluster chalcogenides Mo6X8: Electrochemical intercalation of closed shell ions Zn2+, Cd2+, and Na
journal, September 1987


Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries
journal, February 2010

  • Venkata Narayanan, N. S.; Ashokraj, B. V.; Sampath, S.
  • Journal of Colloid and Interface Science, Vol. 342, Issue 2
  • DOI: 10.1016/j.jcis.2009.10.034

Zn Electrochemistry in 1-Ethyl-3-Methylimidazolium and N -Butyl- N -Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes
journal, September 2014

  • Simons, Tristan J.; MacFarlane, Douglas R.; Forsyth, Maria
  • ChemElectroChem, Vol. 1, Issue 10
  • DOI: 10.1002/celc.201402177

High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte
journal, February 2014


Reducing Side Reactions Using PF 6 -based Electrolytes in Multivalent Hybrid Cells
journal, January 2015

  • Proffit, Danielle L.; Lipson, Albert L.; Pan, Baofei
  • MRS Proceedings, Vol. 1773
  • DOI: 10.1557/opl.2015.590

Current Collector Corrosion in Ca-Ion Batteries
journal, January 2015

  • Lipson, Albert L.; Proffit, Danielle L.; Pan, Baofei
  • Journal of The Electrochemical Society, Vol. 162, Issue 8
  • DOI: 10.1149/2.0811508jes

Innovations in the Study of Adsorbed Reactants by Chronocoulometry.
journal, January 1966


GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit
journal, February 2013


PACKMOL: A package for building initial configurations for molecular dynamics simulations
journal, October 2009

  • Martínez, L.; Andrade, R.; Birgin, E. G.
  • Journal of Computational Chemistry, Vol. 30, Issue 13
  • DOI: 10.1002/jcc.21224

Development and testing of a general amber force field
journal, January 2004

  • Wang, Junmei; Wolf, Romain M.; Caldwell, James W.
  • Journal of Computational Chemistry, Vol. 25, Issue 9
  • DOI: 10.1002/jcc.20035

Automatic atom type and bond type perception in molecular mechanical calculations
journal, October 2006

  • Wang, Junmei; Wang, Wei; Kollman, Peter A.
  • Journal of Molecular Graphics and Modelling, Vol. 25, Issue 2
  • DOI: 10.1016/j.jmgm.2005.12.005

A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model
journal, October 1993

  • Bayly, Christopher I.; Cieplak, Piotr; Cornell, Wendy
  • The Journal of Physical Chemistry, Vol. 97, Issue 40
  • DOI: 10.1021/j100142a004

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
journal, September 2014


Q-Chem: an engine for innovation: Q-Chem: an engine for innovation
journal, November 2012

  • Krylov, Anna I.; Gill, Peter M. W.
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 3, Issue 3
  • DOI: 10.1002/wcms.1122

Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
journal, November 1994

  • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.
  • The Journal of Physical Chemistry, Vol. 98, Issue 45, p. 11623-11627
  • DOI: 10.1021/j100096a001

Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules
journal, January 1971

  • Ditchfield, R.; Hehre, W. J.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 54, Issue 2
  • DOI: 10.1063/1.1674902

The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level
journal, May 1999


The Electrolyte Genome project: A big data approach in battery materials discovery
journal, June 2015


Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations
journal, June 2011

  • Ong, Shyue Ping; Andreussi, Oliviero; Wu, Yabi
  • Chemistry of Materials, Vol. 23, Issue 11
  • DOI: 10.1021/cm200679y

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Glyme−Lithium Salt Phase Behavior
journal, July 2006

  • Henderson, Wesley A.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 26
  • DOI: 10.1021/jp061516t

Diffusion Coefficients in Propylene Carbonate, Dimethyl Formamide, Acetonitrile, and Methyl Formate
journal, January 1970

  • Sullivan, J. M.; Hanson, D. C.; Keller, R.
  • Journal of The Electrochemical Society, Vol. 117, Issue 6
  • DOI: 10.1149/1.2407628

Conductivity and Viscosity of PC-DEC and PC-EC Solutions of LiBF[sub 4]
journal, January 2004

  • Ding, Michael S.
  • Journal of The Electrochemical Society, Vol. 151, Issue 1
  • DOI: 10.1149/1.1630593

Works referencing / citing this record:

A High Power Rechargeable Nonaqueous Multivalent Zn/V 2 O 5 Battery
journal, August 2016

  • Senguttuvan, Premkumar; Han, Sang-Don; Kim, Soojeong
  • Advanced Energy Materials, Vol. 6, Issue 24
  • DOI: 10.1002/aenm.201600826

Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte
journal, January 2019


Rechargeable Zinc-Ion Battery Based on Choline Chloride-Urea Deep Eutectic Solvent
journal, January 2019

  • Kao-ian, Wathanyu; Pornprasertsuk, Rojana; Thamyongkit, Patchanita
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.0641906jes

Lignin@Nafion Membranes Forming Zn Solid–Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc‐Ion Batteries
journal, October 2019


Water in Rechargeable Multivalent-Ion Batteries: An Electrochemical Pandora's Box
journal, January 2019


Reversible epitaxial electrodeposition of metals in battery anodes
journal, October 2019


Free‐Standing Hydrated Sodium Vanadate Papers for High‐Stability Zinc‐Ion Batteries
journal, November 2019


ZnNi x Mn x Co 2-2 x O 4 Spinel as a High-Voltage and High-Capacity Cathode Material for Nonaqueous Zn-Ion Batteries
journal, May 2018

  • Pan, Chengsi; Zhang, Ruixian; Nuzzo, Ralph G.
  • Advanced Energy Materials, Vol. 8, Issue 22
  • DOI: 10.1002/aenm.201800589

A Room‐Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries
journal, April 2019

  • Chen, Chih‐Yao; Matsumoto, Kazuhiko; Kubota, Keigo
  • Advanced Energy Materials, Vol. 9, Issue 22
  • DOI: 10.1002/aenm.201900196

A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long‐Cycle‐Life Batteries
journal, June 2019


Morphology Control of Zinc Electrodeposition By Surfactant Addition for Alkaline-Based Rechargeable Batteries
journal, June 2019

  • Shimizu, Masahiro; Hirahara, Koichi; Arai, Susumu
  • ECS Meeting Abstracts, Vol. MA2019-04, Issue 5, p. 224-224
  • DOI: 10.1149/ma2019-04/5/224

Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes—A Review
journal, April 2018

  • Rajput, Nav Nidhi; Seguin, Trevor J.; Wood, Brandon M.
  • Topics in Current Chemistry, Vol. 376, Issue 3
  • DOI: 10.1007/s41061-018-0195-2