DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation of neoclassical transport with the continuum gyrokinetic code COGENT

Abstract

The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy. Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2];  [2];  [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1248283
Report Number(s):
LLNL-JRNL-636187
Journal ID: ISSN 1070-664X; PHPAEN
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 20; Journal Issue: 1; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; 70 PLASMA PHYSICS AND FUSION; collision theories; electric fields; Lorentz group; tokamaks; plasma gyrokinetics

Citation Formats

Dorf, M. A., Cohen, R. H., Dorr, M., Rognlien, T., Hittinger, J., Compton, J., Colella, P., Martin, D., and McCorquodale, P. Simulation of neoclassical transport with the continuum gyrokinetic code COGENT. United States: N. p., 2013. Web. doi:10.1063/1.4776712.
Dorf, M. A., Cohen, R. H., Dorr, M., Rognlien, T., Hittinger, J., Compton, J., Colella, P., Martin, D., & McCorquodale, P. Simulation of neoclassical transport with the continuum gyrokinetic code COGENT. United States. https://doi.org/10.1063/1.4776712
Dorf, M. A., Cohen, R. H., Dorr, M., Rognlien, T., Hittinger, J., Compton, J., Colella, P., Martin, D., and McCorquodale, P. Fri . "Simulation of neoclassical transport with the continuum gyrokinetic code COGENT". United States. https://doi.org/10.1063/1.4776712. https://www.osti.gov/servlets/purl/1248283.
@article{osti_1248283,
title = {Simulation of neoclassical transport with the continuum gyrokinetic code COGENT},
author = {Dorf, M. A. and Cohen, R. H. and Dorr, M. and Rognlien, T. and Hittinger, J. and Compton, J. and Colella, P. and Martin, D. and McCorquodale, P.},
abstractNote = {The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy. Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.},
doi = {10.1063/1.4776712},
journal = {Physics of Plasmas},
number = 1,
volume = 20,
place = {United States},
year = {Fri Jan 25 00:00:00 EST 2013},
month = {Fri Jan 25 00:00:00 EST 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Progress in Kinetic Simulation of Edge Plasmas
journal, March 2008


Neoclassical equilibria as starting point for global gyrokinetic microturbulence simulations
journal, December 2010

  • Vernay, T.; Brunner, S.; Villard, L.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3519513

Gyrokinetic study of the edge shear layer
journal, April 2006


Conservative gyrokinetic Vlasov simulation
journal, February 2008

  • Idomura, Yasuhiro; Ida, Masato; Tokuda, Shinji
  • Communications in Nonlinear Science and Numerical Simulation, Vol. 13, Issue 1
  • DOI: 10.1016/j.cnsns.2007.05.015

Reduced Electron Models for Edge Simulation
journal, June 2012

  • Cohen, R. H.; Dorf, M.; Dorr, M.
  • Contributions to Plasma Physics, Vol. 52, Issue 5-6
  • DOI: 10.1002/ctpp.201210044

Progress with the COGENT Edge Kinetic Code: Collision Operator Options
journal, June 2012

  • Dorf, M. A.; Cohen, R. H.; Compton, J. C.
  • Contributions to Plasma Physics, Vol. 52, Issue 5-6
  • DOI: 10.1002/ctpp.201210042

A limiter for PPM that preserves accuracy at smooth extrema
journal, July 2008


The radial electric field dynamics in the neoclassical plasmas
journal, December 1997

  • Novakovskii, S. V.; Liu, C. S.; Sagdeev, R. Z.
  • Physics of Plasmas, Vol. 4, Issue 12
  • DOI: 10.1063/1.872590

Nonlinear gyrokinetic equations for turbulence in core transport barriers
journal, December 1996


The neoclassical angular momentum flux in the large aspect ratio limit
journal, September 2005

  • Wong, S. K.; Chan, V. S.
  • Physics of Plasmas, Vol. 12, Issue 9
  • DOI: 10.1063/1.2048027

Edge gyrokinetic theory and continuum simulations
journal, July 2007


Limitations of gyrokinetics on transport time scales
journal, April 2008


Comments on 'Neoclassical heat flux due to poloidal electric field in arbitrary collisionality regime'
journal, January 1995


Anomalous Transport Scaling in the DIII-D Tokamak Matched by Supercomputer Simulation
journal, July 2003


Kinetic effects in tokamak scrape-off layer plasmas
journal, May 1997

  • Batishchev, O. V.; Krasheninnikov, S. I.; Catto, Peter J.
  • Physics of Plasmas, Vol. 4, Issue 5
  • DOI: 10.1063/1.872280

Particle Simulation of the Neoclassical Plasmas
journal, November 2001

  • Heikkinen, J. A.; Kiviniemi, T. P.; Kurki-Suonio, T.
  • Journal of Computational Physics, Vol. 173, Issue 2
  • DOI: 10.1006/jcph.2001.6891

A gyrokinetic collision operator for magnetized Lorentz plasmas
journal, March 2011

  • Liu, Chang; Qin, Hong; Ma, Chenhao
  • Physics of Plasmas, Vol. 18, Issue 3
  • DOI: 10.1063/1.3555534

Neoclassical plateau regime transport in a tokamak pedestal
journal, June 2010


Spontaneous rotation sources in a quiescent tokamak edge plasma
journal, June 2008


On the role of numerical dissipation in gyrokinetic Vlasov simulations of plasma microturbulence
journal, August 2010


Geodesic Acoustic Waves in Hydromagnetic Systems
journal, January 1968


Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers
journal, June 2008


Neoclassical physics in full distribution function gyrokinetics
journal, June 2011

  • Dif-Pradalier, G.; Diamond, P. H.; Grandgirard, V.
  • Physics of Plasmas, Vol. 18, Issue 6
  • DOI: 10.1063/1.3592652

Isothermal tokamak
journal, December 2006

  • Catto, Peter J.; Hazeltine, R. D.
  • Physics of Plasmas, Vol. 13, Issue 12
  • DOI: 10.1063/1.2403090

The effect of the radial electric field on neoclassical flows in a tokamak pedestal
journal, January 2011


The ambipolarity paradox in toroidal diffusion, revisited
journal, July 1978


The global version of the gyrokinetic turbulence code GENE
journal, August 2011

  • Görler, T.; Lapillonne, X.; Brunner, S.
  • Journal of Computational Physics, Vol. 230, Issue 18
  • DOI: 10.1016/j.jcp.2011.05.034

Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime
journal, January 1982


Gyrokinetic particle simulation of neoclassical transport
journal, August 1995

  • Lin, Z.; Tang, W. M.; Lee, W. W.
  • Physics of Plasmas, Vol. 2, Issue 8
  • DOI: 10.1063/1.871196

Gyrokinetic Simulation of Particle and Heat Transport in the Presence of Wide Orbits and Strong Profile Variations in the Edge Plasma
journal, September 2006

  • Heikkinen, J. A.; Henriksson, S.; Janhunen, S.
  • Contributions to Plasma Physics, Vol. 46, Issue 7-9
  • DOI: 10.1002/ctpp.200610035

A guiding-center Fokker–Planck collision operator for nonuniform magnetic fields
journal, September 2004


The guiding centre approximation in lowest order
journal, August 1967


Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics
journal, July 2008


Neoclassical Radial Electric Field and Transport with Finite Orbits
journal, July 2001


Neoclassical ion heat flux and poloidal flow in a tokamak pedestal
journal, March 2010


Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio
journal, September 1997

  • Houlberg, W. A.; Shaing, K. C.; Hirshman, S. P.
  • Physics of Plasmas, Vol. 4, Issue 9
  • DOI: 10.1063/1.872465

Noncircular, finite aspect ratio, local equilibrium model
journal, April 1998

  • Miller, R. L.; Chu, M. S.; Greene, J. M.
  • Physics of Plasmas, Vol. 5, Issue 4
  • DOI: 10.1063/1.872666

High-order, finite-volume methods in mapped coordinates
journal, April 2011

  • Colella, P.; Dorr, M. R.; Hittinger, J. A. F.
  • Journal of Computational Physics, Vol. 230, Issue 8
  • DOI: 10.1016/j.jcp.2010.12.044

Linearized model Fokker–Planck collision operators for gyrokinetic simulations. I. Theory
journal, December 2008

  • Abel, I. G.; Barnes, M.; Cowley, S. C.
  • Physics of Plasmas, Vol. 15, Issue 12
  • DOI: 10.1063/1.3046067

Theory of plasma transport in toroidal confinement systems
journal, April 1976


Transport of momentum in full f gyrokinetics
journal, May 2010

  • Parra, Felix I.; Catto, Peter J.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3327127

Neoclassical ion heat flux and poloidal flow in a tokamak pedestal
journal, June 2010

  • Kagan, Grigory; Catto, Peter J.
  • Plasma Physics and Controlled Fusion, Vol. 52, Issue 7
  • DOI: 10.1088/52/7/079801

Neoclassical plateau regime transport in a tokamak pedestal
journal, September 2010


Neoclassical Radial Electric Field and Transport with Finite Orbits
text, January 2001


Works referencing / citing this record:

Kinetic Simulation of Collisional Magnetized Plasmas with Semi-implicit Time Integration
journal, May 2018

  • Ghosh, Debojyoti; Dorf, Mikhail A.; Dorr, Milo R.
  • Journal of Scientific Computing, Vol. 77, Issue 2
  • DOI: 10.1007/s10915-018-0726-6

Kinetic neoclassical transport in the H-mode pedestal
journal, July 2014

  • Battaglia, D. J.; Burrell, K. H.; Chang, C. S.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4886803

Continuum kinetic modeling of the tokamak plasma edge
journal, May 2016

  • Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943106

Full- f version of GENE for turbulence in open-field-line systems
journal, June 2018

  • Pan, Q.; Told, D.; Shi, E. L.
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5008895

Gyrokinetic simulations of m = 0 mode in sheared flow Z-pinch plasmas
journal, June 2019

  • Geyko, V. I.; Dorf, M.; Angus, J. R.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5100542

Kinetic Simulation of Collisional Magnetized Plasmas with Semi-Implicit Time Integration
preprint, January 2017