DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations

Abstract

Sensitivity coefficients describe the fractional change in a system response that is induced by changes to system parameters and nuclear data. The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, including quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Tracklength importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE-KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using continuous-energy Monte Carlo methods. This work provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through the use of continuous-energy sensitivity methods and also compares severalmore » sensitivity methods in terms of computational efficiency and memory requirements.« less

Authors:
 [1];  [1];  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1246770
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Science and Engineering
Additional Journal Information:
Journal Volume: 182; Journal Issue: 3; Journal ID: ISSN 0029-5639
Publisher:
American Nuclear Society
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; TSUNAMI; eigenvalue sensitivity coefficients; Monte Carlo

Citation Formats

Perfetti, Christopher M., Rearden, Bradley T., and Martin, William R. SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations. United States: N. p., 2016. Web. doi:10.13182/NSE15-12.
Perfetti, Christopher M., Rearden, Bradley T., & Martin, William R. SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations. United States. https://doi.org/10.13182/NSE15-12
Perfetti, Christopher M., Rearden, Bradley T., and Martin, William R. Thu . "SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations". United States. https://doi.org/10.13182/NSE15-12. https://www.osti.gov/servlets/purl/1246770.
@article{osti_1246770,
title = {SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations},
author = {Perfetti, Christopher M. and Rearden, Bradley T. and Martin, William R.},
abstractNote = {Sensitivity coefficients describe the fractional change in a system response that is induced by changes to system parameters and nuclear data. The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, including quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Tracklength importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE-KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using continuous-energy Monte Carlo methods. This work provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through the use of continuous-energy sensitivity methods and also compares several sensitivity methods in terms of computational efficiency and memory requirements.},
doi = {10.13182/NSE15-12},
journal = {Nuclear Science and Engineering},
number = 3,
volume = 182,
place = {United States},
year = {Thu Feb 25 00:00:00 EST 2016},
month = {Thu Feb 25 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 37 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Relations Between Various Contributon Variables Used in Spatial Channel Theory
journal, June 1977


Works referencing / citing this record:

Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: A User’s Guide
journal, March 2017

  • Favorite, Jeffrey A.; Perkó, Zoltán; Kiedrowski, Brian C.
  • Nuclear Science and Engineering, Vol. 185, Issue 3
  • DOI: 10.1080/00295639.2016.1272990

Nuclear data-induced uncertainty quantification of prompt neutron decay constant based on perturbation theory for ADS experiments at KUCA
journal, August 2019


Experimental analysis and uncertainty quantification using random sampling technique for ADS experiments at KUCA
journal, November 2017

  • Endo, Tomohiro; Chiba, Go; van Rooijen, Willem Frederik Geert
  • Journal of Nuclear Science and Technology, Vol. 55, Issue 4
  • DOI: 10.1080/00223131.2017.1403387

Further development of methodology to model TRISO fuel and BISO absorber particles and related uncertainty quantification using SCALE 6
journal, May 2019


Estimating Code Biases for Criticality Safety Applications with Few Relevant Benchmarks
journal, May 2019


GPT-Free Sensitivity Analysis for Monte Carlo Models
journal, January 2019