DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Variational approach to extracting the phonon mean free path distribution from the spectral Boltzmann transport equation

Abstract

The phonon Boltzmann transport equation (BTE) is a powerful tool for studying nondiffusive thermal transport. Here, we develop a new universal variational approach to solving the BTE that enables extraction of phonon mean free path (MFP) distributions from experiments exploring nondiffusive transport. By utilizing the known Fourier heat conduction solution as a trial function, we propose a direct approach to calculating the effective thermal conductivity from the BTE. We reveal this technique on the transient thermal grating experiment, which is a useful tool for studying nondiffusive thermal transport and probing the MFP distribution of materials. We obtain a closed form expression for a suppression function that is materials dependent, successfully addressing the nonuniversality of the suppression function used in the past, while providing a general approach to studying thermal properties in the nondiffusive regime.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1371459
Alternate Identifier(s):
OSTI ID: 1245886
Grant/Contract Number:  
SC0001299; FG02-09ER46577; SC0001299/DE-FG02-09ER46577
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 15; Related Information: S3TEC partners with Massachusetts Institute of Technology (lead); Boston College; Oak Ridge National Laboratory; Rensselaer Polytechnic Institute; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; solar (photovoltaic); solar (thermal); solid state lighting; phonons; thermal conductivity; thermoelectric; defects; mechanical behavior; charge transport; spin dynamics; materials and chemistry by design; optics, synthesis (novel materials); synthesis (self-assembly); synthesis (scalable processing)

Citation Formats

Chiloyan, Vazrik, Zeng, Lingping, Huberman, Samuel, Maznev, Alexei A., Nelson, Keith A., and Chen, Gang. Variational approach to extracting the phonon mean free path distribution from the spectral Boltzmann transport equation. United States: N. p., 2016. Web. doi:10.1103/PhysRevB.93.155201.
Chiloyan, Vazrik, Zeng, Lingping, Huberman, Samuel, Maznev, Alexei A., Nelson, Keith A., & Chen, Gang. Variational approach to extracting the phonon mean free path distribution from the spectral Boltzmann transport equation. United States. https://doi.org/10.1103/PhysRevB.93.155201
Chiloyan, Vazrik, Zeng, Lingping, Huberman, Samuel, Maznev, Alexei A., Nelson, Keith A., and Chen, Gang. Wed . "Variational approach to extracting the phonon mean free path distribution from the spectral Boltzmann transport equation". United States. https://doi.org/10.1103/PhysRevB.93.155201. https://www.osti.gov/servlets/purl/1371459.
@article{osti_1371459,
title = {Variational approach to extracting the phonon mean free path distribution from the spectral Boltzmann transport equation},
author = {Chiloyan, Vazrik and Zeng, Lingping and Huberman, Samuel and Maznev, Alexei A. and Nelson, Keith A. and Chen, Gang},
abstractNote = {The phonon Boltzmann transport equation (BTE) is a powerful tool for studying nondiffusive thermal transport. Here, we develop a new universal variational approach to solving the BTE that enables extraction of phonon mean free path (MFP) distributions from experiments exploring nondiffusive transport. By utilizing the known Fourier heat conduction solution as a trial function, we propose a direct approach to calculating the effective thermal conductivity from the BTE. We reveal this technique on the transient thermal grating experiment, which is a useful tool for studying nondiffusive thermal transport and probing the MFP distribution of materials. We obtain a closed form expression for a suppression function that is materials dependent, successfully addressing the nonuniversality of the suppression function used in the past, while providing a general approach to studying thermal properties in the nondiffusive regime.},
doi = {10.1103/PhysRevB.93.155201},
journal = {Physical Review B},
number = 15,
volume = 93,
place = {United States},
year = {Wed Apr 06 00:00:00 EDT 2016},
month = {Wed Apr 06 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Effective thermal conductivity of silicon (a) and PbSe (b). Here the effective thermal conductivity is plotted to compare the variational technique with the exact numerical technique and various approximations. The variational technique for the full spectral BTE, both with the physical condition of Eq. (4) and with leastmore » squares optimization, demonstrates excellent agreement with the exact numerical solution.« less

Save / Share:

Works referenced in this record:

Determining Phonon Mean Free Paths from Observations of Quasiballistic Thermal Transport
journal, November 2012


Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures
journal, November 2015

  • Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep17131

Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams
journal, November 2009

  • Siemens, Mark E.; Li, Qing; Yang, Ronggui
  • Nature Materials, Vol. 9, Issue 1
  • DOI: 10.1038/nmat2568

Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions
journal, June 2013

  • Regner, K. T.; Majumdar, S.; Malen, J. A.
  • Review of Scientific Instruments, Vol. 84, Issue 6
  • DOI: 10.1063/1.4808055

Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
journal, August 2011


On the use of variational methods for solving Boltzmann equations involving non-Hermitian operators
journal, January 1971

  • Ah-Sam, L. E. G.; Jensen, H. H�jgaard; Smith, H.
  • Journal of Statistical Physics, Vol. 3, Issue 1
  • DOI: 10.1007/BF01012184

Disparate quasiballistic heat conduction regimes from periodic heat sources on a substrate
journal, August 2014

  • Zeng, Lingping; Chen, Gang
  • Journal of Applied Physics, Vol. 116, Issue 6
  • DOI: 10.1063/1.4893299

Non-diffusive relaxation of a transient thermal grating analyzed with the Boltzmann transport equation
journal, September 2013

  • Collins, Kimberlee C.; Maznev, Alexei A.; Tian, Zhiting
  • Journal of Applied Physics, Vol. 114, Issue 10
  • DOI: 10.1063/1.4820572

Semi-analytical solution to the frequency-dependent Boltzmann transport equation for cross-plane heat conduction in thin films
journal, May 2015

  • Hua, Chengyun; Minnich, Austin J.
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4919432

Variational Treatment of High-Frequency Transport Problems in Solids
journal, October 1965


Non-diffusive thermal transport in GaAs at micron length scales
journal, October 2015

  • Johnson, Jeremy A.; Eliason, Jeffrey K.; Maznev, Alexei A.
  • Journal of Applied Physics, Vol. 118, Issue 15
  • DOI: 10.1063/1.4933285

Multidimensional quasiballistic thermal transport in transient grating spectroscopy
journal, August 2015


Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
journal, August 1996


Analysis of heat flow in layered structures for time-domain thermoreflectance
journal, December 2004

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 75, Issue 12
  • DOI: 10.1063/1.1819431

Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations
journal, November 2011


Analytical Green's function of the multidimensional frequency-dependent phonon Boltzmann equation
journal, December 2014


Spectral mapping of thermal conductivity through nanoscale ballistic transport
journal, June 2015

  • Hu, Yongjie; Zeng, Lingping; Minnich, Austin J.
  • Nature Nanotechnology, Vol. 10, Issue 8
  • DOI: 10.1038/nnano.2015.109

An alternative approach to efficient simulation of micro/nanoscale phonon transport
journal, October 2012

  • Péraud, Jean-Philippe M.; Hadjiconstantinou, Nicolas G.
  • Applied Physics Letters, Vol. 101, Issue 15
  • DOI: 10.1063/1.4757607

Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
journal, February 2008

  • Henry, Asegun S.; Chen, Gang
  • Journal of Computational and Theoretical Nanoscience, Vol. 5, Issue 2
  • DOI: 10.1166/jctn.2008.2454

A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency
journal, March 2015

  • Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 16
  • DOI: 10.1073/pnas.1503449112

Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane
journal, January 2013


Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance
journal, March 2013

  • Regner, Keith T.; Sellan, Daniel P.; Su, Zonghui
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2630

Onset of nondiffusive phonon transport in transient thermal grating decay
journal, November 2011


Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes
journal, June 2015


Transport regimes in quasiballistic heat conduction
journal, March 2014


Examining thermal transport through a frequency-domain representation of time-domain thermoreflectance data
journal, December 2014

  • Collins, Kimberlee C.; Maznev, Alexei A.; Cuffe, John
  • Review of Scientific Instruments, Vol. 85, Issue 12
  • DOI: 10.1063/1.4903463

Microscale Heat Conduction in Dielectric Thin Films
journal, February 1993


Works referencing / citing this record:

Monte Carlo study of non-diffusive relaxation of a transient thermal grating in thin membranes
journal, February 2016

  • Zeng, Lingping; Chiloyan, Vazrik; Huberman, Samuel
  • Applied Physics Letters, Vol. 108, Issue 6
  • DOI: 10.1063/1.4941766

Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials
journal, October 2018

  • Jiang, Puqing; Qian, Xin; Yang, Ronggui
  • Journal of Applied Physics, Vol. 124, Issue 16
  • DOI: 10.1063/1.5046944

Modeling ballistic phonon transport from a cylindrical electron beam heat source
journal, September 2019

  • Wehmeyer, Geoff
  • Journal of Applied Physics, Vol. 126, Issue 12
  • DOI: 10.1063/1.5115165

Achieving high power factor and output power density in p-type half-Heuslers Nb 1-x Ti x FeSb
journal, November 2016

  • He, Ran; Kraemer, Daniel; Mao, Jun
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 48
  • DOI: 10.1073/pnas.1617663113

Impact of the Regularization Parameter in the Mean Free Path Reconstruction Method: Nanoscale Heat Transport and Beyond
journal, March 2019

  • Sanchez-Martinez, Miguel-Ángel; Alzina, Francesc; Oyarzo, Juan
  • Nanomaterials, Vol. 9, Issue 3
  • DOI: 10.3390/nano9030414

Monte Carlo Study of Non-diffusive Relaxation of A Transient Thermal Grating in Thin Membranes
text, January 2015


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.