skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scientific and technological advancements in inertial fusion energy

Abstract

Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

Authors:
 [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1245709
Report Number(s):
LLNL-JRNL-627472
Journal ID: ISSN 0029-5515
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 53; Journal Issue: 10; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 70 PLASMA PHYSICS AND FUSION; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Hinkel, D. E. Scientific and technological advancements in inertial fusion energy. United States: N. p., 2013. Web. doi:10.1088/0029-5515/53/10/104027.
Hinkel, D. E. Scientific and technological advancements in inertial fusion energy. United States. doi:10.1088/0029-5515/53/10/104027.
Hinkel, D. E. Thu . "Scientific and technological advancements in inertial fusion energy". United States. doi:10.1088/0029-5515/53/10/104027. https://www.osti.gov/servlets/purl/1245709.
@article{osti_1245709,
title = {Scientific and technological advancements in inertial fusion energy},
author = {Hinkel, D. E.},
abstractNote = {Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.},
doi = {10.1088/0029-5515/53/10/104027},
journal = {Nuclear Fusion},
number = 10,
volume = 53,
place = {United States},
year = {2013},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Ignition and high gain with ultrapowerful lasers
journal, May 1994

  • Tabak, Max; Hammer, James; Glinsky, Michael E.
  • Physics of Plasmas, Vol. 1, Issue 5, p. 1626-1634
  • DOI: 10.1063/1.870664

Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields
journal, July 2012

  • Strozzi, D. J.; Tabak, M.; Larson, D. J.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4739294

Shock Ignition of Thermonuclear Fuel with High Areal Density
journal, April 2007


The National Ignition Facility Project
journal, November 1994

  • Paisner, J. A.; Campbell, E. M.; Hogan, W. J.
  • Fusion Technology, Vol. 26, Issue 3P2
  • DOI: 10.13182/FST94-A40246

The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility
journal, May 2010

  • Michel, P.; Glenzer, S. H.; Divol, L.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3325733

Quasispherical fuel compression and fast ignition in a heavy-ion-driven X-target with one-sided illumination
journal, March 2011

  • Henestroza, Enrique; Logan, B. Grant; Perkins, L. John
  • Physics of Plasmas, Vol. 18, Issue 3
  • DOI: 10.1063/1.3563589

Capsule implosion optimization during the indirect-drive National Ignition Campaign
journal, May 2011

  • Landen, O. L.; Edwards, J.; Haan, S. W.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592170

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion
journal, May 2011

  • Edwards, M. J.; Lindl, J. D.; Spears, B. K.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592173

X-ray driven implosions at ignition relevant velocities on the National Ignition Facility
journal, May 2013

  • Meezan, N. B.; MacKinnon, A. J.; Hicks, D. G.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803915

Hohlraum energetics scaling to 520 TW on the National Ignition Facility
journal, May 2013

  • Kline, J. L.; Callahan, D. A.; Glenzer, S. H.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803907

Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility
journal, May 2011

  • Hinkel, D. E.; Rosen, M. D.; Williams, E. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3577836

Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement
journal, January 2008

  • Amendt, Peter; Cerjan, C.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 15, Issue 1
  • DOI: 10.1063/1.2825662

Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF
journal, October 2012

  • Döppner, T.; Dewald, E. L.; Divol, L.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4731742

Thomson-scattering techniques to diagnose local electron and ion temperatures, density, and plasma wave amplitudes in laser produced plasmas (invited)
journal, October 2006

  • Froula, D. H.; Ross, J. S.; Divol, L.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2336451

Monoenergetic proton backlighter for measuring E and B fields and for radiographing implosions and high-energy density plasmas (invited)
journal, October 2006

  • Li, C. K.; Séguin, F. H.; Frenje, J. A.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2228252

    Works referencing / citing this record:

    Preliminary study on a tetrahedral hohlraum with four half-cylindrical cavities for indirectly driven inertial confinement fusion
    journal, March 2017