DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy

Abstract

We use operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation ofmore » a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. In the end, we find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less

Authors:
 [1];  [2];  [3];  [4];  [4];  [4];  [5];  [4];  [3];  [2]
  1. University of Cambridge, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K., Gonville and Caius College, Trinity Street, Cambridge, CB2 1TA, U.K.
  2. University of Cambridge, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K.
  3. Institut Charles Gerhardt Montpellier-UMR 5253 CNRS, ALISTORE European Research Institute (3104 CNRS), Université Montpellier 2, 34095, Montpellier, France, Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
  4. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
  5. Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC); European Research Council (ERC)
OSTI Identifier:
1244088
Alternate Identifier(s):
OSTI ID: 1261140
Grant/Contract Number:  
AC02-06CH11357; EP/K002252/1
Resource Type:
Published Article
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Name: Journal of the American Chemical Society Journal Volume: 138 Journal Issue: 7; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Allan, Phoebe K., Griffin, John M., Darwiche, Ali, Borkiewicz, Olaf J., Wiaderek, Kamila M., Chapman, Karena W., Morris, Andrew J., Chupas, Peter J., Monconduit, Laure, and Grey, Clare P. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy. United States: N. p., 2016. Web. doi:10.1021/jacs.5b13273.
Allan, Phoebe K., Griffin, John M., Darwiche, Ali, Borkiewicz, Olaf J., Wiaderek, Kamila M., Chapman, Karena W., Morris, Andrew J., Chupas, Peter J., Monconduit, Laure, & Grey, Clare P. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy. United States. https://doi.org/10.1021/jacs.5b13273
Allan, Phoebe K., Griffin, John M., Darwiche, Ali, Borkiewicz, Olaf J., Wiaderek, Kamila M., Chapman, Karena W., Morris, Andrew J., Chupas, Peter J., Monconduit, Laure, and Grey, Clare P. Mon . "Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy". United States. https://doi.org/10.1021/jacs.5b13273.
@article{osti_1244088,
title = {Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy},
author = {Allan, Phoebe K. and Griffin, John M. and Darwiche, Ali and Borkiewicz, Olaf J. and Wiaderek, Kamila M. and Chapman, Karena W. and Morris, Andrew J. and Chupas, Peter J. and Monconduit, Laure and Grey, Clare P.},
abstractNote = {We use operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation of a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. In the end, we find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.},
doi = {10.1021/jacs.5b13273},
journal = {Journal of the American Chemical Society},
number = 7,
volume = 138,
place = {United States},
year = {Mon Feb 15 00:00:00 EST 2016},
month = {Mon Feb 15 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/jacs.5b13273

Citation Metrics:
Cited by: 153 works
Citation information provided by
Web of Science

Save / Share: