DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal structure of a substrate-engaged SecY protein-translocation channel

Abstract

Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61α, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation. How a translocating polypeptide inserts into the channel is uncertain, as cryo-electron microscopy structures of the active channel have a relatively low resolution (~10 Å) or are of insufficient quality. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits inmore » a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The carboxy (C)-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Furthermore, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.« less

Authors:
 [1];  [2];  [3];  [3];  [3];  [1]
  1. Howard Hughes Medical Institute and Harvard Medical School, Boston, MA (United States)
  2. The Rockefeller University and Howard Hughes Medical Inst., New York, NY (United States); Howard Hughes Medical Institute and Harvard Medical School, Boston, MA (United States)
  3. Whitehead Inst. for Biomedical Research, Cambridge, MA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Inst. of Health
OSTI Identifier:
1243126
Grant/Contract Number:  
GM052586
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 531; Journal Issue: 7594; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; Protein translocation; X-ray crystallography

Citation Formats

Li, Long, Park, Eunyong, Ling, JingJing, Ingram, Jessica, Ploegh, Hidde, and Rapoport, Tom A. Crystal structure of a substrate-engaged SecY protein-translocation channel. United States: N. p., 2016. Web. doi:10.1038/nature17163.
Li, Long, Park, Eunyong, Ling, JingJing, Ingram, Jessica, Ploegh, Hidde, & Rapoport, Tom A. Crystal structure of a substrate-engaged SecY protein-translocation channel. United States. https://doi.org/10.1038/nature17163
Li, Long, Park, Eunyong, Ling, JingJing, Ingram, Jessica, Ploegh, Hidde, and Rapoport, Tom A. Mon . "Crystal structure of a substrate-engaged SecY protein-translocation channel". United States. https://doi.org/10.1038/nature17163. https://www.osti.gov/servlets/purl/1243126.
@article{osti_1243126,
title = {Crystal structure of a substrate-engaged SecY protein-translocation channel},
author = {Li, Long and Park, Eunyong and Ling, JingJing and Ingram, Jessica and Ploegh, Hidde and Rapoport, Tom A.},
abstractNote = {Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61α, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation. How a translocating polypeptide inserts into the channel is uncertain, as cryo-electron microscopy structures of the active channel have a relatively low resolution (~10 Å) or are of insufficient quality. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The carboxy (C)-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Furthermore, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.},
doi = {10.1038/nature17163},
journal = {Nature (London)},
number = 7594,
volume = 531,
place = {United States},
year = {Mon Mar 07 00:00:00 EST 2016},
month = {Mon Mar 07 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 111 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
journal, January 1997

  • Nielsen, H.; Engelbrecht, J.; Brunak, S.
  • Protein Engineering Design and Selection, Vol. 10, Issue 1, p. 1-6
  • DOI: 10.1093/protein/10.1.1

Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes
journal, September 2010

  • Egea, P. F.; Stroud, R. M.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 40
  • DOI: 10.1073/pnas.1012556107

Solving structures of protein complexes by molecular replacement with Phaser
journal, December 2006

  • McCoy, Airlie J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 63, Issue 1
  • DOI: 10.1107/S0907444906045975

Visualization of a polytopic membrane protein during SecY-mediated membrane insertion
journal, June 2014

  • Bischoff, Lukas; Wickles, Stephan; Berninghausen, Otto
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5103

Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments
journal, May 1993

  • Rizo, Josep; Blanco, Francisco J.; Kobe, Bostjan
  • Biochemistry, Vol. 32, Issue 18
  • DOI: 10.1021/bi00069a025

Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
journal, April 2005

  • Cannon, Kurt S.; Or, Eran; Clemons, William M.
  • Journal of Cell Biology, Vol. 169, Issue 2
  • DOI: 10.1083/jcb.200412019

Crystal Structures of SecYEG in Lipidic Cubic Phase Elucidate a Precise Resting and a Peptide-Bound State
journal, November 2015


Signal Sequence Recognition in Posttranslational Protein Transport across the Yeast ER Membrane
journal, September 1998


Structure of the SecY channel during initiation of protein translocation
journal, October 2013

  • Park, Eunyong; Ménétret, Jean-François; Gumbart, James C.
  • Nature, Vol. 506, Issue 7486
  • DOI: 10.1038/nature12720

Structure of a complex of the ATPase SecA and the protein-translocation channel
journal, October 2008

  • Zimmer, Jochen; Nam, Yunsun; Rapoport, Tom A.
  • Nature, Vol. 455, Issue 7215
  • DOI: 10.1038/nature07335

Mechanisms of Sec61/SecY-Mediated Protein Translocation Across Membranes
journal, June 2012


Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors
journal, June 2012


Version 1.2 of the Crystallography and NMR system
journal, October 2007


GPCR Engineering Yields High-Resolution Structural Insights into  2-Adrenergic Receptor Function
journal, October 2007


Mapping an Interface of SecY (PrlA) and SecE (PrlG) by Using Synthetic Phenotypes and In Vivo Cross-Linking
journal, June 1999


A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane
journal, July 1995


Bacterial protein translocation requires only one copy of the SecY complex in vivo
journal, August 2012

  • Park, Eunyong; Rapoport, Tom A.
  • The Journal of Cell Biology, Vol. 198, Issue 5
  • DOI: 10.1083/jcb.201205140

UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

The Sec61p Complex Mediates the Integration of a Membrane Protein by Allowing Lipid Partitioning of the Transmembrane Domain
journal, July 2000


Preserving the membrane barrier for small molecules during bacterial protein translocation
journal, May 2011


Engineering and characterization of a superfolder green fluorescent protein
journal, December 2005

  • Pédelacq, Jean-Denis; Cabantous, Stéphanie; Tran, Timothy
  • Nature Biotechnology, Vol. 24, Issue 1, p. 79-88
  • DOI: 10.1038/nbt1172

Conformational Requirement of Signal Sequences Functioning in Yeast: Circular Dichroism and 1H Nuclear Magnetic Resonance Studies of Synthetic Peptides
dataset, January 1995

  • Yamamoto, Yoshio; Ohkubo, Tadayasu; Kohara, Atuko
  • Biological Magnetic Resonance Bank
  • DOI: 10.13018/bmr1138

Collaboration gets the most out of software
journal, September 2013


The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer
journal, April 1995


XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/s0907444909047337

Three-dimensional structure of the bacterial protein-translocation complex SecYEG
journal, August 2002

  • Breyton, Cécile; Haase, Winfried; Rapoport, Tom A.
  • Nature, Vol. 418, Issue 6898
  • DOI: 10.1038/nature00827

Three-dimensional structure of the bacterial protein-translocation complex SecYEG
journal, August 2002

  • Breyton, Cécile; Haase, Winfried; Rapoport, Tom A.
  • Nature, Vol. 418, Issue 6898
  • DOI: 10.1038/nature00827

The Protein-Conducting Channel in the Membrane of the Endoplasmic Reticulum Is Open Laterally toward the Lipid Bilayer
text, January 2008


Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions
journal, August 2013

  • Guimaraes, Carla P.; Witte, Martin D.; Theile, Christopher S.
  • Nature Protocols, Vol. 8, Issue 9
  • DOI: 10.1038/nprot.2013.101

Phasing at high resolution using Ta 6 Br 12 cluster
journal, February 2003

  • Banumathi, Sankaran; Dauter, Miroslawa; Dauter, Zbigniew
  • Acta Crystallographica Section D Biological Crystallography, Vol. 59, Issue 3
  • DOI: 10.1107/s0907444903000064

How good are my data and what is the resolution?
journal, June 2013

  • Evans, Philip R.; Murshudov, Garib N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 7
  • DOI: 10.1107/s0907444913000061

Version 1.2 of the Crystallography and NMR system
journal, October 2007


Structure of the Mammalian Ribosome-Sec61 Complex to 3.4 Å Resolution
journal, June 2014


Structure and function of a membrane component SecDF that enhances protein export
journal, May 2011

  • Tsukazaki, Tomoya; Mori, Hiroyuki; Echizen, Yuka
  • Nature, Vol. 474, Issue 7350
  • DOI: 10.1038/nature09980

Investigating the SecY plug movement at the SecYEG translocation channel
journal, September 2005

  • Tam, Patrick C. K.; Maillard, Antoine P.; Chan, Kenneth K. Y.
  • The EMBO Journal, Vol. 24, Issue 19
  • DOI: 10.1038/sj.emboj.7600804

Tinkering with nature
journal, June 2011

  • Rehling, Peter
  • Nature Reviews Molecular Cell Biology, Vol. 12, Issue 7
  • DOI: 10.1038/nrm3137

PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

Preserving the membrane barrier for small molecules during bacterial protein translocation
journal, May 2011


Cysteine-free rop: A four-helix bundle core mutant has wild-type stability and structure but dramatically different unfolding kinetics
journal, January 2010

  • Hari, Sanjay B.; Byeon, Chang; Lavinder, Jason J.
  • Protein Science, Vol. 19, Issue 4
  • DOI: 10.1002/pro.342

Selection and identification of single domain antibody fragments from camel heavy-chain antibodies
journal, September 1997


Protein Translocation: The Sec61/SecYEG Translocon Caught in the Act
journal, April 2014


Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion
journal, February 2014

  • Gogala, Marko; Becker, Thomas; Beatrix, Birgitta
  • Nature, Vol. 506, Issue 7486
  • DOI: 10.1038/nature12950

Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
journal, April 2005

  • Cannon, Kurt S.; Or, Eran; Clemons, William M.
  • Journal of Cell Biology, Vol. 169, Issue 2
  • DOI: 10.1083/jcb.200412019

Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors
journal, June 2012


Recognition of transmembrane helices by the endoplasmic reticulum translocon
journal, January 2005

  • Hessa, Tara; Kim, Hyun; Bihlmaier, Karl
  • Nature, Vol. 433, Issue 7024
  • DOI: 10.1038/nature03216

Structure of a complex of the ATPase SecA and the protein-translocation channel
journal, October 2008

  • Zimmer, Jochen; Nam, Yunsun; Rapoport, Tom A.
  • Nature, Vol. 455, Issue 7215
  • DOI: 10.1038/nature07335

Structure of the SecY channel during initiation of protein translocation
journal, October 2013

  • Park, Eunyong; Ménétret, Jean-François; Gumbart, James C.
  • Nature, Vol. 506, Issue 7486
  • DOI: 10.1038/nature12720

Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs)
journal, July 2007

  • Maass, David R.; Sepulveda, Jorge; Pernthaner, Anton
  • Journal of Immunological Methods, Vol. 324, Issue 1-2
  • DOI: 10.1016/j.jim.2007.04.008

Conformational Requirement of Signal Sequences Functioning in Yeast: Circular Dichroism and 1H Nuclear Magnetic Resonance Studies of Synthetic Peptides
dataset, January 1995

  • Yamamoto, Yoshio; Ohkubo, Tadayasu; Kohara, Atuko
  • Biological Magnetic Resonance Bank
  • DOI: 10.13018/bmr1140

Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments
journal, May 1993

  • Rizo, Josep; Blanco, Francisco J.; Kobe, Bostjan
  • Biochemistry, Vol. 32, Issue 18
  • DOI: 10.1021/bi00069a025

A “Push and Slide” Mechanism Allows Sequence-Insensitive Translocation of Secretory Proteins by the SecA ATPase
journal, June 2014


Conformational transition of Sec machinery inferred from bacterial SecYE structures
journal, October 2008

  • Tsukazaki, Tomoya; Mori, Hiroyuki; Fukai, Shuya
  • Nature, Vol. 455, Issue 7215
  • DOI: 10.1038/nature07421

Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
journal, January 1997

  • Nielsen, H.; Engelbrecht, J.; Brunak, S.
  • Protein Engineering Design and Selection, Vol. 10, Issue 1, p. 1-6
  • DOI: 10.1093/protein/10.1.1

HiLiDe—Systematic Approach to Membrane Protein Crystallization in Lipid and Detergent
journal, June 2011

  • Gourdon, Pontus; Andersen, Jacob Lauwring; Hein, Kim Langmach
  • Crystal Growth & Design, Vol. 11, Issue 6
  • DOI: 10.1021/cg101360d

Puzzle Plugged by Protein Pore Plasticity
journal, May 2007


Structure of the native Sec61 protein-conducting channel
journal, September 2015

  • Pfeffer, Stefan; Burbaum, Laura; Unverdorben, Pia
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9403

X-ray structure of a protein-conducting channel
journal, December 2003

  • Berg, Bert van den; Clemons, William M.; Collinson, Ian
  • Nature, Vol. 427, Issue 6969
  • DOI: 10.1038/nature02218

PARP1 exhibits enhanced association and catalytic efficiency with γH2A.X-nucleosome
journal, December 2019


Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions
journal, August 2013

  • Guimaraes, Carla P.; Witte, Martin D.; Theile, Christopher S.
  • Nature Protocols, Vol. 8, Issue 9
  • DOI: 10.1038/nprot.2013.101

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/s0907444910007493

Bacterial protein translocation requires only one copy of the SecY complex in vivo
journal, August 2012

  • Park, Eunyong; Rapoport, Tom A.
  • The Journal of Cell Biology, Vol. 198, Issue 5
  • DOI: 10.1083/jcb.201205140

Structure and mechanism of Escherichia coli type I signal peptidase
journal, August 2014


Maximum-likelihood density modification
journal, August 2000

  • Terwilliger, Thomas C.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 56, Issue 8
  • DOI: 10.1107/S0907444900005072

Structure of the Mammalian Ribosome-Sec61 Complex to 3.4 Å Resolution
journal, June 2014


Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs)
journal, July 2007

  • Maass, David R.; Sepulveda, Jorge; Pernthaner, Anton
  • Journal of Immunological Methods, Vol. 324, Issue 1-2
  • DOI: 10.1016/j.jim.2007.04.008

REFMAC 5 for the refinement of macromolecular crystal structures
journal, March 2011

  • Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444911001314

A “Push and Slide” Mechanism Allows Sequence-Insensitive Translocation of Secretory Proteins by the SecA ATPase
journal, June 2014


Structure of the Sec61 channel opened by a signal sequence
journal, December 2015


UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

The Protein-Conducting Channel in the Membrane of the Endoplasmic Reticulum Is Open Laterally toward the Lipid Bilayer
text, January 2008


Visualization of a polytopic membrane protein during SecY-mediated membrane insertion
journal, June 2014

  • Bischoff, Lukas; Wickles, Stephan; Berninghausen, Otto
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5103

Investigating the SecY plug movement at the SecYEG translocation channel
journal, September 2005

  • Tam, Patrick C. K.; Maillard, Antoine P.; Chan, Kenneth K. Y.
  • The EMBO Journal, Vol. 24, Issue 19
  • DOI: 10.1038/sj.emboj.7600804

Functional and Nonfunctional LamB Signal Sequences Can Be Distinguished by Their Biophysical Properties
journal, October 1989


Works referencing / citing this record:

Structure of the post-translational protein translocation machinery of the ER membrane
journal, December 2018


Structural considerations of folded protein import through the chloroplast TOC / TIC translocons
journal, March 2019


Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates
journal, December 2019

  • da Silva, Ronni A. G.; Karlyshev, Andrey V.; Oldfield, Neil J.
  • Frontiers in Microbiology, Vol. 10
  • DOI: 10.3389/fmicb.2019.02847

Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide
journal, July 2017


A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion.
journalarticle, January 2016

  • Botte, Mathieu; Zaccai, Nathan R.; Nijeholt, Jelger Lycklama À
  • Springer Science and Business Media LLC
  • DOI: 10.17863/cam.16759

Interaction mapping of the Sec61 translocon identifies two Sec61α regions interacting with hydrophobic segments in translocating chains
journal, September 2018


Structural Basis of the Sec Translocon and YidC Revealed Through X-ray Crystallography
journal, April 2019


Archaeal cell surface biogenesis
journal, June 2018

  • Pohlschroder, Mechthild; Pfeiffer, Friedhelm; Schulze, Stefan
  • FEMS Microbiology Reviews, Vol. 42, Issue 5
  • DOI: 10.1093/femsre/fuy027

The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA
journal, September 2019

  • Wang, Shuai; Jomaa, Ahmad; Jaskolowski, Mateusz
  • Nature Structural & Molecular Biology, Vol. 26, Issue 10
  • DOI: 10.1038/s41594-019-0297-8

SecY-SecA fusion protein retains the ability to mediate protein transport
journal, August 2017


Post-Translational Protein Transport by the Sec Complex
journal, June 2019

  • Allen, William J.; Collinson, Ian; Römisch, Karin
  • Trends in Biochemical Sciences, Vol. 44, Issue 6
  • DOI: 10.1016/j.tibs.2019.03.003

Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration
journal, March 2017


Insertion of proteins and lipopolysaccharide into the bacterial outer membrane
journal, June 2017

  • Botos, Istvan; Noinaj, Nicholas; Buchanan, Susan K.
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 372, Issue 1726
  • DOI: 10.1098/rstb.2016.0224

Driving Forces of Translocation Through Bacterial Translocon SecYEG
journal, January 2018

  • Knyazev, Denis G.; Kuttner, Roland; Zimmermann, Mirjam
  • The Journal of Membrane Biology, Vol. 251, Issue 3
  • DOI: 10.1007/s00232-017-0012-9

Quality control of nonstop membrane proteins at the ER membrane and in the cytosol
journal, August 2016

  • Arakawa, Shunsuke; Yunoki, Kaori; Izawa, Toshiaki
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep30795

An alternate mode of oligomerization for E. coli SecA
journal, September 2017

  • Yazdi, Aliakbar Khalili; Vezina, Grant C.; Shilton, Brian H.
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/s41598-017-11648-5

Structure-based working model of SecDF, a proton-driven bacterial protein translocation factor
journal, April 2018


Structure of the posttranslational Sec protein-translocation channel complex from yeast
journal, December 2018


Structure of the substrate-engaged SecA-SecY protein translocation machine
journal, June 2019


Tracking Proteins Secreted by Bacteria: What's in the Toolbox?
journal, May 2017

  • Maffei, Benoit; Francetic, Olivera; Subtil, Agathe
  • Frontiers in Cellular and Infection Microbiology, Vol. 7
  • DOI: 10.3389/fcimb.2017.00221

Archaeal cell surface biogenesis
journal, June 2018

  • Pohlschroder, Mechthild; Pfeiffer, Friedhelm; Schulze, Stefan
  • FEMS Microbiology Reviews, Vol. 42, Issue 5
  • DOI: 10.1093/femsre/fuy027

A clearer picture of the ER translocon complex
journal, February 2020

  • Gemmer, Max; Förster, Friedrich
  • Journal of Cell Science, Vol. 133, Issue 3
  • DOI: 10.1242/jcs.231340

Molecular Mimicry of SecA and Signal Recognition Particle Binding to the Bacterial Ribosome
journal, August 2019


Structure of the substrate-engaged SecA-SecY protein translocation machine
journal, June 2019


Protein translocation by the SecA ATPase occurs by a power‐stroke mechanism
journal, March 2019

  • Catipovic, Marco A.; Bauer, Benedikt W.; Loparo, Joseph J.
  • The EMBO Journal, Vol. 38, Issue 9
  • DOI: 10.15252/embj.2018101140

ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery
journal, January 2019


EMC Is Required to Initiate Accurate Membrane Protein Topogenesis
journal, November 2018


Voltage Sensing in Bacterial Protein Translocation
text, January 2020


Atomic structures of anthrax toxin protective antigen channels bound to partially unfolded lethal and edema factors
journal, February 2020


Molecular Mimicry of SecA and Signal Recognition Particle Binding to the Bacterial Ribosome
journal, August 2019


The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria
journal, April 2018

  • Cranford-Smith, Tamar; Huber, Damon
  • FEMS Microbiology Letters, Vol. 365, Issue 11
  • DOI: 10.1093/femsle/fny093

Protein export through the bacterial Sec pathway
journal, November 2016

  • Tsirigotaki, Alexandra; De Geyter, Jozefien; Šoštaric´, Nikolina
  • Nature Reviews Microbiology, Vol. 15, Issue 1
  • DOI: 10.1038/nrmicro.2016.161

Voltage Sensing in Bacterial Protein Translocation
text, January 2020


Driving Forces of Translocation Through Bacterial Translocon SecYEG
journal, January 2018

  • Knyazev, Denis G.; Kuttner, Roland; Zimmermann, Mirjam
  • The Journal of Membrane Biology, Vol. 251, Issue 3
  • DOI: 10.1007/s00232-017-0012-9

Dynamic action of the Sec machinery during initiation, protein translocation and termination
journal, June 2018


Protein Translocation: SecA–SecY Conformational Crosstalk Opens Channel
journal, September 2016


Voltage Sensing in Bacterial Protein Translocation
journal, January 2020

  • Knyazev, Denis G.; Kuttner, Roland; Bondar, Ana-Nicoleta
  • Biomolecules, Vol. 10, Issue 1
  • DOI: 10.3390/biom10010078

Protein Transport Across the Bacterial Plasma Membrane by the Sec Pathway
journal, May 2019


Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation
journal, May 2016


ZMPSTE24 missense mutations that cause progeroid diseases decrease prelamin A cleavage activity and/or protein stability
journal, May 2018

  • Spear, Eric D.; Hsu, Erh-Ting; Nie, Laiyin
  • Disease Models & Mechanisms, Vol. 11, Issue 7
  • DOI: 10.1242/dmm.033670