skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain

Abstract

In this study, imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. As a result, we found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effects of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2Δ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence ofmore » 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. In conclusion, this work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors.« less

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [4];  [1];  [1];  [1];  [1];  [1]
  1. Univ. of Wisconsin, Madison, WI (United States)
  2. RIKEN Center for Sustainable Resource Science, Saitama (Japan)
  3. Univ. of Minnesota-Twin Cities, Minneapolis, MN (United States)
  4. Univ. of Toronto, Toronto, ON (Canada)
Publication Date:
Research Org.:
Wisconsin Alumni Research Foundation, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1242892
Grant/Contract Number:  
FC02-07ER64494
Resource Type:
Accepted Manuscript
Journal Name:
Microbial Cell Factories
Additional Journal Information:
Journal Volume: 15; Journal Issue: 1; Journal ID: ISSN 1475-2859
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; chemical genomics; ionic liquids; Lignocellulosic; biofuel; biocatalysts

Citation Formats

Dickinson, Quinn, Bottoms, Scott, Hinchman, Li, McIlwain, Sean, Li, Sheena, Myers, Chad L., Boone, Charles, Coon, Joshua J., Hebert, Alexander, Sato, Trey K., Landick, Robert, and Piotrowski, Jeff S. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. United States: N. p., 2016. Web. doi:10.1186/s12934-016-0417-7.
Dickinson, Quinn, Bottoms, Scott, Hinchman, Li, McIlwain, Sean, Li, Sheena, Myers, Chad L., Boone, Charles, Coon, Joshua J., Hebert, Alexander, Sato, Trey K., Landick, Robert, & Piotrowski, Jeff S. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. United States. doi:10.1186/s12934-016-0417-7.
Dickinson, Quinn, Bottoms, Scott, Hinchman, Li, McIlwain, Sean, Li, Sheena, Myers, Chad L., Boone, Charles, Coon, Joshua J., Hebert, Alexander, Sato, Trey K., Landick, Robert, and Piotrowski, Jeff S. Wed . "Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain". United States. doi:10.1186/s12934-016-0417-7. https://www.osti.gov/servlets/purl/1242892.
@article{osti_1242892,
title = {Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain},
author = {Dickinson, Quinn and Bottoms, Scott and Hinchman, Li and McIlwain, Sean and Li, Sheena and Myers, Chad L. and Boone, Charles and Coon, Joshua J. and Hebert, Alexander and Sato, Trey K. and Landick, Robert and Piotrowski, Jeff S.},
abstractNote = {In this study, imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. As a result, we found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effects of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2Δ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. In conclusion, this work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors.},
doi = {10.1186/s12934-016-0417-7},
journal = {Microbial Cell Factories},
number = 1,
volume = 15,
place = {United States},
year = {2016},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Exploring the Mode-of-Action of Bioactive Compounds by Chemical-Genetic Profiling in Yeast
journal, August 2006


Nonenzymatic Sugar Production from Biomass Using Biomass-Derived  -Valerolactone
journal, January 2014


Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
journal, January 2007

  • Almeida, Joao; Modig, Tobias; Petersson, Anneli
  • Journal of Chemical Technology & Biotechnology, Vol. 82, Issue 4, p. 340-349
  • DOI: 10.1002/jctb.1676

Quantitative phenotyping via deep barcode sequencing
journal, July 2009


edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
journal, November 2009


Functional Organization of the S. cerevisiae Phosphorylation Network
journal, March 2009


The One Hour Yeast Proteome
journal, October 2013

  • Hebert, Alexander S.; Richards, Alicia L.; Bailey, Derek J.
  • Molecular & Cellular Proteomics, Vol. 13, Issue 1
  • DOI: 10.1074/mcp.M113.034769

The STK2 gene, which encodes a putative Ser/Thr protein kinase, is required for high-affinity spermidine transport in Saccharomyces cerevisiae.
journal, June 1997

  • Kaouass, M.; Audette, M.; Ramotar, D.
  • Molecular and Cellular Biology, Vol. 17, Issue 6
  • DOI: 10.1128/MCB.17.6.2994

Characteristics of the Polyamine Transporter TPO1 and Regulation of Its Activity and Cellular Localization by Phosphorylation
journal, January 2005

  • Uemura, T.; Tachihara, K.; Tomitori, H.
  • Journal of Biological Chemistry, Vol. 280, Issue 10
  • DOI: 10.1074/jbc.M410274200

Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8
journal, January 2013

  • Shi, Yan; Chai, Liyuan; Tang, Chongjian
  • Biotechnology for Biofuels, Vol. 6, Issue 1
  • DOI: 10.1186/1754-6834-6-1

Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride
journal, January 2007

  • Fort, Diego A.; Remsing, Richard C.; Swatloski, Richard P.
  • Green Chemistry, Vol. 9, Issue 1, p. 63-69
  • DOI: 10.1039/B607614A

Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose
journal, August 2014

  • Socha, A. M.; Parthasarathi, R.; Shi, J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 35
  • DOI: 10.1073/pnas.1405685111

Separation of Lignin from Corn Stover Hydrolysate with Quantitative Recovery of Ionic Liquid
journal, March 2015

  • Underkofler, Kaylee A.; Teixeira, Rodrigo E.; Pietsch, Stephen A.
  • ACS Sustainable Chemistry & Engineering, Vol. 3, Issue 4
  • DOI: 10.1021/sc500731c

Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates
journal, January 2013

  • Skerker, Jeffrey M.; Leon, Dacia; Price, Morgan N.
  • Molecular Systems Biology, Vol. 9, Issue 1
  • DOI: 10.1038/msb.2013.30

Unbiased Screening of Marine Sponge Extracts for Anti-inflammatory Agents Combined with Chemical Genomics Identifies Girolline as an Inhibitor of Protein Synthesis
journal, October 2013

  • Fung, Shan-Yu; Sofiyev, Vladimir; Schneiderman, Julia
  • ACS Chemical Biology, Vol. 9, Issue 1
  • DOI: 10.1021/cb400740c

A Genomewide Screen Reveals a Role of Mitochondria in Anaerobic Uptake of Sterols in Yeast
journal, January 2006

  • Reiner, Sonja; Micolod, Delphine; Zellnig, Günther
  • Molecular Biology of the Cell, Vol. 17, Issue 1
  • DOI: 10.1091/mbc.E05-06-0515

Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors
journal, March 2014


Harnessing Genetic Diversity in Saccharomyces cerevisiae for Fermentation of Xylose in Hydrolysates of Alkaline Hydrogen Peroxide-Pretreated Biomass
journal, November 2013

  • Sato, Trey K.; Liu, Tongjun; Parreiras, Lucas S.
  • Applied and Environmental Microbiology, Vol. 80, Issue 2
  • DOI: 10.1128/AEM.01885-13

Anaerobic Xylose Fermentation by Recombinant Saccharomyces cerevisiae Carrying XYL1, XYL2, and XKS1 in Mineral Medium Chemostat Cultures
journal, August 2000


Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
journal, August 2000


Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids
journal, January 2005

  • Docherty, Kathryn M.; Kulpa, Jr., Charles F.
  • Green Chemistry, Vol. 7, Issue 4
  • DOI: 10.1039/b419172b

Mechanism of action of valinomycin on mitochondria
journal, May 1964


Regulation of Yeast H+-ATPase by Protein Kinases Belonging to a Family Dedicated to Activation of Plasma Membrane Transporters
journal, October 2000


Mitochondria-dependent apoptosis in yeast
journal, July 2008

  • Pereira, C.; Silva, R. D.; Saraiva, L.
  • Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Vol. 1783, Issue 7
  • DOI: 10.1016/j.bbamcr.2008.03.010

Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell
journal, May 2011

  • Magtanong, Leslie; Ho, Cheuk Hei; Barker, Sarah L.
  • Nature Biotechnology, Vol. 29, Issue 6
  • DOI: 10.1038/nbt.1855

Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs
journal, January 2012


High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
journal, January 2007


Fermentable sugars by chemical hydrolysis of biomass
journal, March 2010

  • Binder, J. B.; Raines, R. T.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 10, p. 4516-4521
  • DOI: 10.1073/pnas.0912073107

Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production
journal, January 2011

  • Ouellet, Mario; Datta, Supratim; Dibble, Dean C.
  • Green Chemistry, Vol. 13, Issue 10
  • DOI: 10.1039/c1gc15327g

    Works referencing / citing this record:

    Mechanistic insights into the effect of imidazolium ionic liquid on lipid production by Geotrichum fermentans
    journal, December 2016

    • Liu, Li-Ping; Zong, Min-Hua; Linhardt, Robert J.
    • Biotechnology for Biofuels, Vol. 9, Issue 1
    • DOI: 10.1186/s13068-016-0682-z

    Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates
    journal, February 2019


    Natural Variation in the Multidrug Efflux Pump SGE1 Underlies Ionic Liquid Tolerance in Yeast
    journal, July 2018