skip to main content


Title: Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: Effects on hydrolysate composition, microbial response and fermentation

Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics during the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of somemore » furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. In conclusion, our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate.« less
 [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [3] ;  [4] ;  [5] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] more »;  [1] ;  [1] ;  [2] ;  [1] « less
  1. Univ. of Wisconsin, Madison, WI (United States)
  2. Michigan State Univ., East Lansing, MI (United States)
  3. RIKEN Center for Sustainable Resource Science, Saitama (Japan)
  4. Univ. of Minnesota, Twin Cities, Minneapolis, MN (United States)
  5. Univ. of Toronto, ON (Canada)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Biotechnology for Biofuels
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 1754-6834
BioMed Central
Research Org:
Wisconsin Alumni Research Foundation, Madison, WI (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
09 BIOMASS FUELS; biomass feedstock; Lignocellulosic hydrolysate; fermentation; chemical genomics; inhibitors; sterility; Saccharomyces cerevisiae; Zymomonas mobilis
OSTI Identifier: