skip to main content


Title: A two-fluid study of oblique tearing modes in a force-free current sheet

Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Because kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. As a results this theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.
 [1] ;  [1] ;  [2] ;  [3]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. National Science Foundation, Arlington, VA (United States)
  3. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1070-664X; PHPAEN
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 1; Journal ID: ISSN 1070-664X
American Institute of Physics (AIP)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; oblique modes; tearing; electron dissipation regions
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1236411