skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

Abstract

Electrical energy storage becomes increasingly more important It was reported by McKinsey that the potential economic impac of improved energy storage could be 90 to 635 billion per year by 2025. [ 1 ] Although Li-ion batteries (LIBs) are powerin billions of portable electronic products as well as hybrid an electric vehicles, the safety issues related to the corrosive an fl ammable liquid electrolytes in current commercialized LIB must be addressed. [ 2–4 ] Replacing liquid electrolytes with solidstat inorganic electrolytes has been considered as the ultimat solution to address the safety issues. In addition, the solid-stat electrolytes can be readily integrated with a metallic lithiu anode, allowing solid-state LIBs with potentially high energ densities. Thus far, solid-state electrolytes have not been widel used in the commercial products because their ionic conductivitie are not high enough to meet the requirements for highperformanc Li batteries. [ 5–7 ] Hence, it is extremely importan to develop advanced solid-state electrolytes with high ionic conductivit and good compatibility with cathode and anode material for all-solid-state LIBs.

Authors:
 [1];  [2];  [1];  [2];  [2];  [3];  [1];  [1];  [2];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Nevada, Las Vegas, NV (United States)
  3. Univ. at Buffalo, NY (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Nevada, Las Vegas, NV (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1240619
Alternate Identifier(s):
OSTI ID: 1332394
Report Number(s):
LA-UR-15-26439
Journal ID: ISSN 2198-3844
Grant/Contract Number:  
AC52-06NA25396; NA0001982
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Science
Additional Journal Information:
Journal Name: Advanced Science; Journal ID: ISSN 2198-3844
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; antiperovskite phase; solid-state batteries; superionic conductor; sustainable chemistry; thin films

Citation Formats

Lü, Xujie, Howard, John W., Chen, Aiping, Zhu, Jinlong, Li, Shuai, Wu, Gang, Dowden, Paul, Xu, Hongwu, Zhao, Yusheng, and Jia, Quanxi. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries. United States: N. p., 2016. Web. doi:10.1002/advs.201500359.
Lü, Xujie, Howard, John W., Chen, Aiping, Zhu, Jinlong, Li, Shuai, Wu, Gang, Dowden, Paul, Xu, Hongwu, Zhao, Yusheng, & Jia, Quanxi. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries. United States. doi:10.1002/advs.201500359.
Lü, Xujie, Howard, John W., Chen, Aiping, Zhu, Jinlong, Li, Shuai, Wu, Gang, Dowden, Paul, Xu, Hongwu, Zhao, Yusheng, and Jia, Quanxi. Tue . "Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries". United States. doi:10.1002/advs.201500359. https://www.osti.gov/servlets/purl/1240619.
@article{osti_1240619,
title = {Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries},
author = {Lü, Xujie and Howard, John W. and Chen, Aiping and Zhu, Jinlong and Li, Shuai and Wu, Gang and Dowden, Paul and Xu, Hongwu and Zhao, Yusheng and Jia, Quanxi},
abstractNote = {Electrical energy storage becomes increasingly more important It was reported by McKinsey that the potential economic impac of improved energy storage could be 90 to 635 billion per year by 2025. [ 1 ] Although Li-ion batteries (LIBs) are powerin billions of portable electronic products as well as hybrid an electric vehicles, the safety issues related to the corrosive an fl ammable liquid electrolytes in current commercialized LIB must be addressed. [ 2–4 ] Replacing liquid electrolytes with solidstat inorganic electrolytes has been considered as the ultimat solution to address the safety issues. In addition, the solid-stat electrolytes can be readily integrated with a metallic lithiu anode, allowing solid-state LIBs with potentially high energ densities. Thus far, solid-state electrolytes have not been widel used in the commercial products because their ionic conductivitie are not high enough to meet the requirements for highperformanc Li batteries. [ 5–7 ] Hence, it is extremely importan to develop advanced solid-state electrolytes with high ionic conductivit and good compatibility with cathode and anode material for all-solid-state LIBs.},
doi = {10.1002/advs.201500359},
journal = {Advanced Science},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


A facile method for the synthesis of the Li 0.3 La 0.57 TiO 3 solid state electrolyte
journal, January 2014

  • Zhang, Qifeng; Schmidt, Nick; Lan, Jolin
  • Chem. Commun., Vol. 50, Issue 42
  • DOI: 10.1039/C4CC00335G

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

First-principles study of LiPON and related solid electrolytes
journal, May 2010


Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

Crystal Chemistry and Stability of “Li7La3Zr2O12 ” Garnet: A Fast Lithium-Ion Conductor
journal, February 2011

  • Geiger, Charles A.; Alekseev, Evgeny; Lazic, Biljana
  • Inorganic Chemistry, Vol. 50, Issue 3, p. 1089-1097
  • DOI: 10.1021/ic101914e

Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12
journal, January 2012

  • Han, Jiantao; Zhu, Jinlong; Li, Yutao
  • Chemical Communications, Vol. 48, Issue 79
  • DOI: 10.1039/c2cc35089k

Air-stable, high-conduction solid electrolytes of arsenic-substituted Li 4 SnS 4
journal, January 2014

  • Sahu, Gayatri; Lin, Zhan; Li, Juchuan
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE43357A

Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Ionic conductivity in Li 3 N single crystals
journal, June 1977

  • Alpen, U. v.; Rabenau, A.; Talat, G. H.
  • Applied Physics Letters, Vol. 30, Issue 12
  • DOI: 10.1063/1.89283

Superionic Conductivity in Lithium-Rich Anti-Perovskites
journal, August 2012

  • Zhao, Yusheng; Daemen, Luke L.
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja305709z

Phase Stability and Transport Mechanisms in Antiperovskite Li 3 OCl and Li 3 OBr Superionic Conductors
journal, November 2013

  • Emly, Alexandra; Kioupakis, Emmanouil; Van der Ven, Anton
  • Chemistry of Materials, Vol. 25, Issue 23
  • DOI: 10.1021/cm4016222

Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites
journal, April 2013


High pressure-high temperature synthesis of lithium-rich Li3O(Cl, Br) and Li3−xCax/2OCl anti-perovskite halides
journal, October 2014


Li-rich anti-perovskite Li 3 OCl films with enhanced ionic conductivity
journal, January 2014

  • Lü, Xujie; Wu, Gang; Howard, John W.
  • Chem. Commun., Vol. 50, Issue 78
  • DOI: 10.1039/C4CC05372A

Concentration of Charge Carriers, Migration, and Stability in Li 3 OCl Solid Electrolytes
journal, December 2014

  • Mouta, Rodolpho; Melo, Maria Águida B.; Diniz, Eduardo M.
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm503717e

Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems
journal, January 2012

  • Koo, Min; Park, Kwi-Il; Lee, Seung Hyun
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl302254v

Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO 4 Cathode and Li 4 Ti 5 O 12 Anode for Applications in Smart Textiles
journal, January 2012

  • Liu, Y.; Gorgutsa, S.; Santato, Clara
  • Journal of The Electrochemical Society, Vol. 159, Issue 4
  • DOI: 10.1149/2.020204jes

Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes
journal, May 2006


Studies on capacity fade of lithium-ion batteries
journal, December 2000


An Advanced Tool for the Selection of Electrolyte Components for Rechargeable Lithium Batteries
journal, January 1998

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 145, Issue 10
  • DOI: 10.1149/1.1838831

Mechanism Leading to Irreversible Capacity Loss in Li Ion Rechargeable Batteries
journal, January 1995

  • Matsumura, Y.
  • Journal of The Electrochemical Society, Vol. 142, Issue 9
  • DOI: 10.1149/1.2048665

    Works referencing / citing this record:

    Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12
    journal, April 2019

    • Wang, Yingqi; Lü, Xujie; Zheng, Chong
    • Angewandte Chemie International Edition, Vol. 58, Issue 23
    • DOI: 10.1002/anie.201901739

    Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12
    journal, April 2019

    • Wang, Yingqi; Lü, Xujie; Zheng, Chong
    • Angewandte Chemie International Edition, Vol. 58, Issue 23
    • DOI: 10.1002/anie.201901739

    Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
    journal, February 2018


    Antiperovskites with Exceptional Functionalities
    journal, November 2019


    Ion Conductivity Enhancement in Anti-Spinel Li 3 OBr with Intrinsic Vacancies
    journal, November 2018

    • Hussain, Fiaz; Li, Pai; Li, Zhenyu
    • Advanced Theory and Simulations, Vol. 2, Issue 3
    • DOI: 10.1002/adts.201800138

    Ultrathin Li 4 Ti 5 O 12 Nanosheet Based Hierarchical Microspheres for High-Rate and Long-Cycle Life Li-Ion Batteries
    journal, July 2017

    • He, Yishi; Muhetaer, Aidaer; Li, Jianming
    • Advanced Energy Materials, Vol. 7, Issue 21
    • DOI: 10.1002/aenm.201700950

    Designing Safe Electrolyte Systems for a High-Stability Lithium-Sulfur Battery
    journal, January 2018

    • Chen, Wei; Lei, Tianyu; Wu, Chunyang
    • Advanced Energy Materials, Vol. 8, Issue 10
    • DOI: 10.1002/aenm.201702348

    Revealing the Short‐Circuiting Mechanism of Garnet‐Based Solid‐State Electrolyte
    journal, April 2019

    • Song, Yongli; Yang, Luyi; Zhao, Wenguang
    • Advanced Energy Materials, Vol. 9, Issue 21
    • DOI: 10.1002/aenm.201900671

    Interfacial Incompatibility and Internal Stresses in All‐Solid‐State Lithium Ion Batteries
    journal, August 2019

    • He, Yanming; Lu, Chuanyang; Liu, Shan
    • Advanced Energy Materials, Vol. 9, Issue 36
    • DOI: 10.1002/aenm.201901810

    Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries
    journal, June 2016


    Chemistry Design Towards a Stable Sulfide‐Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12
    journal, April 2019


    Halogenid‐basierte Materialien und Chemie für wiederaufladbare Batterien
    journal, January 2020

    • Zhao, Xiangyu; Zhao‐Karger, Zhirong; Fichtner, Maximilian
    • Angewandte Chemie, Vol. 132, Issue 15
    • DOI: 10.1002/ange.201902842

    4.5 V High‐Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode
    journal, August 2019


    Halide‐Based Materials and Chemistry for Rechargeable Batteries
    journal, January 2020

    • Zhao, Xiangyu; Zhao‐Karger, Zhirong; Fichtner, Maximilian
    • Angewandte Chemie International Edition, Vol. 59, Issue 15
    • DOI: 10.1002/anie.201902842

    4.5 V High‐Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode
    journal, October 2019

    • Yan, Chong; Xu, Rui; Qin, Jin‐Lei
    • Angewandte Chemie International Edition, Vol. 58, Issue 43
    • DOI: 10.1002/anie.201908874

    Perovskite materials in energy storage and conversion: Perovskite materials in energy storage and conversion
    journal, May 2016

    • Zhu, Liang; Ran, Ran; Tadé, Moses
    • Asia-Pacific Journal of Chemical Engineering, Vol. 11, Issue 3
    • DOI: 10.1002/apj.2000

    Recent Research on Strategies to Improve Ion Conduction in Alkali Metal‐Ion Batteries
    journal, April 2019


    Synthesis and Properties of NaSICON‐type LATP and LAGP Solid Electrolytes
    journal, July 2019


    First Principle Material Genome Approach for All Solid‐State Batteries
    journal, September 2019

    • Xu, Hongjie; Yu, Yuran; Wang, Zhuo
    • ENERGY & ENVIRONMENTAL MATERIALS, Vol. 2, Issue 4
    • DOI: 10.1002/eem2.12053

    Negating interfacial impedance in garnet-based solid-state Li metal batteries
    journal, December 2016

    • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
    • Nature Materials, Vol. 16, Issue 5
    • DOI: 10.1038/nmat4821

    Understanding interface stability in solid-state batteries
    journal, December 2019


    Titanium dioxide nanotrees for high-capacity lithium-ion microbatteries
    journal, January 2016

    • Wen, Wei; Wu, Jin-Ming; Jiang, Yin-Zhu
    • Journal of Materials Chemistry A, Vol. 4, Issue 27
    • DOI: 10.1039/c6ta03331h

    Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries
    journal, January 2017

    • Ogoke, Ogechi; Wu, Gang; Wang, Xianliang
    • Journal of Materials Chemistry A, Vol. 5, Issue 2
    • DOI: 10.1039/c6ta07864h

    Enhanced Li + conduction in perovskite Li 3x La 2/3−x1/3−2x TiO 3 solid-electrolytes via microstructural engineering
    journal, January 2017

    • Kwon, Woo Ju; Kim, Hyeongil; Jung, Kyu-Nam
    • Journal of Materials Chemistry A, Vol. 5, Issue 13
    • DOI: 10.1039/c7ta00196g

    All-solid-state lithium–sulfur batteries based on a newly designed Li 7 P 2.9 Mn 0.1 S 10.7 I 0.3 superionic conductor
    journal, January 2017

    • Xu, Ruo-chen; Xia, Xin-hui; Li, Shu-han
    • Journal of Materials Chemistry A, Vol. 5, Issue 13
    • DOI: 10.1039/c7ta01147d

    Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes
    journal, January 2018

    • Dawson, James A.; Attari, Tavleen S.; Chen, Hungru
    • Energy & Environmental Science, Vol. 11, Issue 10
    • DOI: 10.1039/c8ee00779a

    Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries
    journal, January 2020

    • Yin, Lihong; Yuan, Huimin; Kong, Long
    • Chemical Communications, Vol. 56, Issue 8
    • DOI: 10.1039/c9cc08382k

    Boosting ionic conductivity in antiperovskite Li 3 OCl via defect engineering: Interstitial versus vacancy
    journal, November 2019


    Insights into Grain Boundary in Lithium-Rich Anti-Perovskite as Solid Electrolytes
    journal, January 2018

    • Chen, Bingbing; Xu, Chaoqun; Zhou, Jianqiu
    • Journal of The Electrochemical Society, Vol. 165, Issue 16
    • DOI: 10.1149/2.0831816jes

    Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries
    journal, January 2017

    • Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian
    • Journal of The Electrochemical Society, Vol. 164, Issue 7
    • DOI: 10.1149/2.1571707jes

    Encapsulating Mo-Doped TiO2 Anatase in N-Doped Amorphous Carbon With Excellent Lithium Storage Performances
    journal, February 2019