DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

Abstract

The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform verticalmore » orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.« less

Authors:
 [1];  [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1240601
Alternate Identifier(s):
OSTI ID: 1420611
Report Number(s):
LA-UR-15-20967
Journal ID: ISSN 0021-8979; JAPIAU
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 118; Journal Issue: 1; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; nanowire; silicon; germanium; synthesis

Citation Formats

Choi, S. G., Manandhar, P., and Picraux, S. T. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests. United States: N. p., 2015. Web. doi:10.1063/1.4923355.
Choi, S. G., Manandhar, P., & Picraux, S. T. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests. United States. https://doi.org/10.1063/1.4923355
Choi, S. G., Manandhar, P., and Picraux, S. T. Tue . "Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests". United States. https://doi.org/10.1063/1.4923355. https://www.osti.gov/servlets/purl/1240601.
@article{osti_1240601,
title = {Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests},
author = {Choi, S. G. and Manandhar, P. and Picraux, S. T.},
abstractNote = {The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.},
doi = {10.1063/1.4923355},
journal = {Journal of Applied Physics},
number = 1,
volume = 118,
place = {United States},
year = {Tue Jul 07 00:00:00 EDT 2015},
month = {Tue Jul 07 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Silicon–Germanium Nanowires: Chemistry and Physics in Play, from Basic Principles to Advanced Applications
journal, November 2013

  • Amato, Michele; Palummo, Maurizia; Rurali, Riccardo
  • Chemical Reviews, Vol. 114, Issue 2
  • DOI: 10.1021/cr400261y

Semiconductors: Data Handbook
book, January 2004


Strain distributions and electronic property modifications in Si/Ge axial nanowire heterostructures
journal, February 2009

  • Swadener, J. G.; Picraux, S. T.
  • Journal of Applied Physics, Vol. 105, Issue 4
  • DOI: 10.1063/1.3077293

Silicon and germanium nanowires: Growth, properties, and integration
journal, April 2010


Fabrication of Si1−xGex alloy nanowire field-effect transistors
journal, July 2007

  • Kim, Cheol-Joo; Yang, Jee-Eun; Lee, Hyun-Seung
  • Applied Physics Letters, Vol. 91, Issue 3
  • DOI: 10.1063/1.2753722

Electrical transport of bottom-up grown single-crystal Si 1− x Ge x nanowire
journal, April 2008


Interface Charge Induced p-Type Characteristics of Aligned Si 1− x Ge x Nanowires
journal, November 2008

  • Seong, Han-Kyu; Jeon, Eun-Kyoung; Kim, Myoung-Ha
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl8016362

Thermal conductivities of Si1−xGex nanowires with different germanium concentrations and diameters
journal, June 2010

  • Kim, Hyoungjoon; Kim, Ilsoo; Choi, Heon-jin
  • Applied Physics Letters, Vol. 96, Issue 23
  • DOI: 10.1063/1.3443707

Large thermoelectric figure of merit in Si1−xGex nanowires
journal, April 2010

  • Shi, Lihong; Yao, Donglai; Zhang, Gang
  • Applied Physics Letters, Vol. 96, Issue 17
  • DOI: 10.1063/1.3421543

Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and hole-phonon scattering
journal, October 2011

  • Martinez, Julio A.; Provencio, Paula P.; Picraux, S. T.
  • Journal of Applied Physics, Vol. 110, Issue 7
  • DOI: 10.1063/1.3647575

Electron Transport in SiGe Alloy Nanowires in the Ballistic Regime from First-Principles
journal, May 2012

  • Amato, Michele; Ossicini, Stefano; Rurali, Riccardo
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl204313v

Band engineered epitaxial Ge–SixGe1−x core-shell nanowire heterostructures
journal, July 2009

  • Varahramyan, K. M.; Ferrer, D.; Tutuc, E.
  • Applied Physics Letters, Vol. 95, Issue 3
  • DOI: 10.1063/1.3173811

$\hbox{Ge-Si}_{x}\hbox{Ge}_{1 - x}$ Core–Shell Nanowire Tunneling Field-Effect Transistors
journal, August 2010

  • Nah, Jun; Liu, En-Shao; Varahramyan, Kamran M.
  • IEEE Transactions on Electron Devices, Vol. 57, Issue 8
  • DOI: 10.1109/TED.2010.2051249

Band-Gap Modulation in Single-Crystalline Si 1 - x Ge x Nanowires
journal, December 2006

  • Yang, Jee-Eun; Jin, Chang-Beom; Kim, Cheol-Joo
  • Nano Letters, Vol. 6, Issue 12
  • DOI: 10.1021/nl0614821

On-Nanowire Band-Graded Si:Ge Photodetectors
journal, January 2011

  • Kim, Cheol-Joo; Lee, Hyun-Seung; Cho, Yong-Jun
  • Advanced Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adma.201004034

Vapor–Liquid–Solid Growth of Silicon–Germanium Nanowires
journal, December 2003


Effect of growth conditions on the composition and structure of Si 1− x Ge x nanowires grown by vapor–liquid–solid growth
journal, November 2006

  • Lew, Kok-Keong; Pan, Ling; Dickey, Elizabeth C.
  • Journal of Materials Research, Vol. 21, Issue 11
  • DOI: 10.1557/jmr.2006.0349

Diameter-Dependent Composition of Vapor−Liquid−Solid Grown Si 1 - x Ge x Nanowires
journal, October 2007

  • Zhang, Xi; Lew, Kok-Keong; Nimmatoori, Pramod
  • Nano Letters, Vol. 7, Issue 10
  • DOI: 10.1021/nl071132u

Pressure-Modulated Alloy Composition in Si (1- x ) Ge x Nanowires
journal, May 2009

  • Givan, Uri; Patolsky, Fernando
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl803657z

SiGe nanowire growth and characterization
journal, January 2007


Composition and growth direction control of epitaxial vapor-liquid-solid-grown SiGe nanowires
journal, October 2010

  • Dailey, Eric; Madras, Prashanth; Drucker, Jeff
  • Applied Physics Letters, Vol. 97, Issue 14
  • DOI: 10.1063/1.3497079

Integration of Nanowire Devices in Out-of-Plane Geometry
journal, June 2010

  • Manandhar, P.; Akhadov, E. A.; Tracy, C.
  • Nano Letters, Vol. 10, Issue 6
  • DOI: 10.1021/nl100747w

Germanium Nanowire Epitaxy:  Shape and Orientation Control
journal, February 2006

  • Adhikari, Hemant; Marshall, Ann F.; Chidsey, Christopher E. D.
  • Nano Letters, Vol. 6, Issue 2
  • DOI: 10.1021/nl052231f

Vertical or Horizontal: Understanding Nanowire Orientation and Growth from Substrates
journal, March 2012

  • Cao, Y. Y.; Yang, G. W.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 10
  • DOI: 10.1021/jp210659g

Growth, Defect Formation, and Morphology Control of Germanium–Silicon Semiconductor Nanowire Heterostructures
journal, October 2011

  • Dayeh, Shadi A.; Wang, Jian; Li, Nan
  • Nano Letters, Vol. 11, Issue 10
  • DOI: 10.1021/nl202126q

In situ studies of semiconductor nanowire growth using optical reflectometry
journal, October 2006

  • Clement, T.; Ingole, S.; Ketharanathan, S.
  • Applied Physics Letters, Vol. 89, Issue 16
  • DOI: 10.1063/1.2364121

Direct Observation of Nanoscale Size Effects in Ge Semiconductor Nanowire Growth
journal, October 2010

  • Dayeh, Shadi A.; Picraux, S. T.
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl1019722

Silane pyrolysis rates for the modeling of chemical vapor deposition
journal, January 1987

  • Meyerson, Bernard S.; Jasinski, Joseph M.
  • Journal of Applied Physics, Vol. 61, Issue 2
  • DOI: 10.1063/1.338180

Computational Chemistry Predictions of Kinetics and Major Reaction Pathways for Germane Gas-Phase Reactions
journal, January 1996

  • Simka, H.
  • Journal of The Electrochemical Society, Vol. 143, Issue 8
  • DOI: 10.1149/1.1837063

Identifying Crystallization- and Incorporation-Limited Regimes during Vapor–Liquid–Solid Growth of Si Nanowires
journal, May 2014

  • Pinion, Christopher W.; Nenon, David P.; Christesen, Joseph D.
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn501403v

Vapor-liquid-solid growth of Si nanowires: A kinetic analysis
journal, July 2012

  • Shakthivel, Dhayalan; Raghavan, Srinivasan
  • Journal of Applied Physics, Vol. 112, Issue 2
  • DOI: 10.1063/1.4737597

Vapor-liquid-solid growth of germanium nanostructures on silicon
journal, December 2004

  • Dailey, J. W.; Taraci, J.; Clement, T.
  • Journal of Applied Physics, Vol. 96, Issue 12
  • DOI: 10.1063/1.1815051

Vertical Growth of Ge Nanowires from Biotemplated Au Nanoparticle Catalysts
journal, August 2008

  • Sierra-Sastre, Yajaira; Choi, Sukgeun; Picraux, S. T.
  • Journal of the American Chemical Society, Vol. 130, Issue 32
  • DOI: 10.1021/ja8037382

Shape-controlled growth of single-crystalline Ge nanostructures
journal, May 2006

  • Jin, Chang-Beom; Yang, Jee-Eun; Jo, Moon-Ho
  • Applied Physics Letters, Vol. 88, Issue 19
  • DOI: 10.1063/1.2201899

In situ pre-growth calibration using reflectance as a control strategy for MOCVD fabrication of device structures
journal, April 1997


Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction
journal, May 1997

  • Westwater, J.; Gosain, D. P.; Tomiya, S.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 15, Issue 3, Article No. 554
  • DOI: 10.1116/1.589291

Pressure-Induced Orientation Control of the Growth of Epitaxial Silicon Nanowires
journal, August 2008

  • Lugstein, A.; Steinmair, M.; Hyun, Y. J.
  • Nano Letters, Vol. 8, Issue 8
  • DOI: 10.1021/nl8011006

Controlling Silicon Nanowire Growth Direction via Surface Chemistry
journal, May 2012

  • Shin, Naechul; Filler, Michael A.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl300461a

From Droplets to Nanowires: Dynamics of Vapor-Liquid-Solid Growth
journal, May 2009


Kinetically Induced Kinking of Vapor−Liquid−Solid Grown Epitaxial Si Nanowires
journal, November 2009

  • Madras, Prashanth; Dailey, Eric; Drucker, Jeff
  • Nano Letters, Vol. 9, Issue 11
  • DOI: 10.1021/nl902013g

Works referencing / citing this record:

Dual-gate operation and carrier transport in SiGe p–n junction nanowires
journal, October 2017


Plastic recovery and self-healing in longitudinally twinned SiGe nanowires
text, January 2021