skip to main content

DOE PAGESDOE PAGES

Title: Indirect excitation of ultrafast demagnetization

Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. As a result, our data thus confirm recent theoretical predictions.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [3] ;  [4] ;  [5] ;  [6] ;  [6] ;  [6] ;  [7] ;  [8] ;  [8] ;  [9] ;  [10] ;  [8] ;  [8] ;  [8] more »;  [8] ;  [8] ;  [11] ;  [12] ;  [12] ;  [13] ;  [14] « less
  1. Sorbone Univ., Paris (France); CNRS, UMR, Paris (France)
  2. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  3. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Hamburg (Germany)
  4. Univ. de Lorraine, Vandoeuvre cedex (France)
  5. Peter Grunberg Institut, Julich (Germany)
  6. Univ. Paris-Saclay, Palaiseau cedex (France)
  7. Univ. Siegen, Siegen (Germany)
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Amsterdam, Amsterdam (The Netherlands)
  10. Synchrotron SOLEIL, Gif-sur-Yvette Cedex (France)
  11. Lund Univ., Lund (Sweden)
  12. Technische Univ. Berlin, Berlin (Germany); Max-Born-Institut, Berlin (Germany)
  13. Lund Univ., Lund (Sweden); Technische Univ. Berlin, Berlin (Germany); Max-Born-Institut, Berlin (Germany)
  14. Sorbonne Univ., Paris (France); Synchrotron SOLEIL, Gif-sur-Yvette Cedex (France)
Publication Date:
Grant/Contract Number:
AC03-76SF00515
Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
ferromagnetism; free-electron lasers; magnetic properties and materials
OSTI Identifier:
1240090

Vodungbo, Boris, Tudu, Bahrati, Perron, Jonathan, Delaunay, Renaud, Müller, Leonard, Berntsen, Magnus H., Grübel, Gerhard, Malinowski, Grégory, Weier, Christian, Gautier, Julien, Lambert, Guillaume, Zeitoun, Philippe, Gutt, Christian, Jal, Emmanuelle, Reid, Alexander H., Granitzka, Patrick W., Jaouen, Nicolas, Dakovski, Georgi L., Moeller, Stefan, Minitti, Michael P., Mitra, Ankush, Carron, Sebastian, Pfau, Bastian, von Korff Schmising, Clemens, Schneider, Michael, Eisebitt, Stefan, and Lüning, Jan. Indirect excitation of ultrafast demagnetization. United States: N. p., Web. doi:10.1038/srep18970.
Vodungbo, Boris, Tudu, Bahrati, Perron, Jonathan, Delaunay, Renaud, Müller, Leonard, Berntsen, Magnus H., Grübel, Gerhard, Malinowski, Grégory, Weier, Christian, Gautier, Julien, Lambert, Guillaume, Zeitoun, Philippe, Gutt, Christian, Jal, Emmanuelle, Reid, Alexander H., Granitzka, Patrick W., Jaouen, Nicolas, Dakovski, Georgi L., Moeller, Stefan, Minitti, Michael P., Mitra, Ankush, Carron, Sebastian, Pfau, Bastian, von Korff Schmising, Clemens, Schneider, Michael, Eisebitt, Stefan, & Lüning, Jan. Indirect excitation of ultrafast demagnetization. United States. doi:10.1038/srep18970.
Vodungbo, Boris, Tudu, Bahrati, Perron, Jonathan, Delaunay, Renaud, Müller, Leonard, Berntsen, Magnus H., Grübel, Gerhard, Malinowski, Grégory, Weier, Christian, Gautier, Julien, Lambert, Guillaume, Zeitoun, Philippe, Gutt, Christian, Jal, Emmanuelle, Reid, Alexander H., Granitzka, Patrick W., Jaouen, Nicolas, Dakovski, Georgi L., Moeller, Stefan, Minitti, Michael P., Mitra, Ankush, Carron, Sebastian, Pfau, Bastian, von Korff Schmising, Clemens, Schneider, Michael, Eisebitt, Stefan, and Lüning, Jan. 2016. "Indirect excitation of ultrafast demagnetization". United States. doi:10.1038/srep18970. https://www.osti.gov/servlets/purl/1240090.
@article{osti_1240090,
title = {Indirect excitation of ultrafast demagnetization},
author = {Vodungbo, Boris and Tudu, Bahrati and Perron, Jonathan and Delaunay, Renaud and Müller, Leonard and Berntsen, Magnus H. and Grübel, Gerhard and Malinowski, Grégory and Weier, Christian and Gautier, Julien and Lambert, Guillaume and Zeitoun, Philippe and Gutt, Christian and Jal, Emmanuelle and Reid, Alexander H. and Granitzka, Patrick W. and Jaouen, Nicolas and Dakovski, Georgi L. and Moeller, Stefan and Minitti, Michael P. and Mitra, Ankush and Carron, Sebastian and Pfau, Bastian and von Korff Schmising, Clemens and Schneider, Michael and Eisebitt, Stefan and Lüning, Jan},
abstractNote = {Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. As a result, our data thus confirm recent theoretical predictions.},
doi = {10.1038/srep18970},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {2016},
month = {1}
}