skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Topology-generating interfacial pattern formation during liquid metal dealloying

Abstract

Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

Authors:
 [1];  [2];  [2];  [2];  [1]
  1. Northeastern Univ., Boston, MA (United States)
  2. Johns Hopkins Univ., Baltimore, MD (United States)
Publication Date:
Research Org.:
Northeastern Univ., Boston, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1239972
Grant/Contract Number:  
FG02-07ER46400
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; physical sciences; materials science

Citation Formats

Geslin, Pierre -Antoine, McCue, Ian, Gaskey, Bernard, Erlebacher, Jonah, and Karma, Alain. Topology-generating interfacial pattern formation during liquid metal dealloying. United States: N. p., 2015. Web. doi:10.1038/ncomms9887.
Geslin, Pierre -Antoine, McCue, Ian, Gaskey, Bernard, Erlebacher, Jonah, & Karma, Alain. Topology-generating interfacial pattern formation during liquid metal dealloying. United States. doi:https://doi.org/10.1038/ncomms9887
Geslin, Pierre -Antoine, McCue, Ian, Gaskey, Bernard, Erlebacher, Jonah, and Karma, Alain. Thu . "Topology-generating interfacial pattern formation during liquid metal dealloying". United States. doi:https://doi.org/10.1038/ncomms9887. https://www.osti.gov/servlets/purl/1239972.
@article{osti_1239972,
title = {Topology-generating interfacial pattern formation during liquid metal dealloying},
author = {Geslin, Pierre -Antoine and McCue, Ian and Gaskey, Bernard and Erlebacher, Jonah and Karma, Alain},
abstractNote = {Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.},
doi = {10.1038/ncomms9887},
journal = {Nature Communications},
number = ,
volume = 6,
place = {United States},
year = {2015},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Evolution of nanoporosity in dealloying
journal, March 2001

  • Erlebacher, Jonah; Aziz, Michael J.; Karma, Alain
  • Nature, Vol. 410, Issue 6827, p. 450-453
  • DOI: 10.1038/35068529

An Atomistic Description of Dealloying
journal, January 2004

  • Erlebacher, Jonah
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1784820

Hard Materials with Tunable Porosity
journal, August 2009


Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems
journal, August 2013

  • Chen, Qing; Sieradzki, Karl
  • Nature Materials, Vol. 12, Issue 12
  • DOI: 10.1038/nmat3741

Magnesium Alloy Precursor Thin Films for Efficient, Practical Fabrication of Nanoporous Metals
journal, November 2013

  • Wang, Lei; Briot, Nicolas J.; Swartzentruber, Phillip D.
  • Metallurgical and Materials Transactions A, Vol. 45, Issue 1
  • DOI: 10.1007/s11661-013-2127-7

Achieving finer pores and ligaments in nanoporous palladium–nickel thin films
journal, February 2010


Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts
journal, October 2010

  • Snyder, J.; Fujita, T.; Chen, M. W.
  • Nature Materials, Vol. 9, Issue 11
  • DOI: 10.1038/nmat2878

Atomic origins of the high catalytic activity of nanoporous gold
journal, August 2012

  • Fujita, Takeshi; Guan, Pengfei; McKenna, Keith
  • Nature Materials, Vol. 11, Issue 9
  • DOI: 10.1038/nmat3391

Surface-chemistry-driven actuation in nanoporous gold
journal, November 2008

  • Biener, J.; Wittstock, A.; Zepeda-Ruiz, L. A.
  • Nature Materials, Vol. 8, Issue 1
  • DOI: 10.1038/nmat2335

Electrochemical DNA Biosensor Based on Nanoporous Gold Electrode and Multifunctional Encoded DNA−Au Bio Bar Codes
journal, December 2008

  • Hu, Kongcheng; Lan, Dongxiao; Li, Xuemei
  • Analytical Chemistry, Vol. 80, Issue 23
  • DOI: 10.1021/ac8017197

Toward the Theoretical Capacitance of RuO 2 Reinforced by Highly Conductive Nanoporous Gold
journal, March 2013


Are Nanoporous Materials Radiation Resistant?
journal, June 2011

  • Bringa, E. M.; Monk, J. D.; Caro, A.
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl201383u

Dealloying by metallic melt
journal, April 2011


Bulk-Nanoporous-Silicon Negative Electrode with Extremely High Cyclability for Lithium-Ion Batteries Prepared Using a Top-Down Process
journal, July 2014

  • Wada, Takeshi; Ichitsubo, Tetsu; Yubuta, Kunio
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl501500g

Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors
journal, February 2015


Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation
journal, August 2007

  • Qian, L. H.; Chen, M. W.
  • Applied Physics Letters, Vol. 91, Issue 8
  • DOI: 10.1063/1.2773757

Mechanism of Coarsening and Bubble Formation in High-Genus Nanoporous Metals
journal, June 2011


Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel
journal, May 2013


Surface Diffusion and Dissolution Kinetics in the Electrolyte–Metal Interface
journal, January 2010

  • Policastro, S. A.; Carnahan, J. C.; Zangari, G.
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3478572

Nanoporous gold formation by dealloying: A Metropolis Monte Carlo study
journal, June 2013

  • Zinchenko, O.; De Raedt, H. A.; Detsi, E.
  • Computer Physics Communications, Vol. 184, Issue 6
  • DOI: 10.1016/j.cpc.2013.02.004

Effect of Precursor Stoichiometry on the Morphology of Nanoporous Platinum Sponges
journal, June 2014

  • Supansomboon, Supitcha; Porkovich, Alexander; Dowd, Annette
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 12
  • DOI: 10.1021/am501794y

Thermal Stability of Nanoporous Raney Gold Catalyst
journal, July 2015

  • Tai, Matthew; Gentle, Angus; de Silva, Kaludewa
  • Metals, Vol. 5, Issue 3
  • DOI: 10.3390/met5031197

Phase field modeling of electrochemistry. I. Equilibrium
journal, February 2004


Phase field modeling of electrochemistry. II. Kinetics
journal, February 2004


Phase-Field Simulation of Solidification
journal, August 2002


Growth of 'dizzy dendrites' in a random field of foreign particles
journal, January 2003

  • Gránásy, László; Pusztai, Tamás; Warren, James A.
  • Nature Materials, Vol. 2, Issue 2
  • DOI: 10.1038/nmat815

Orientation selection in dendritic evolution
journal, July 2006

  • Haxhimali, Tomorr; Karma, Alain; Gonzales, Frédéric
  • Nature Materials, Vol. 5, Issue 8
  • DOI: 10.1038/nmat1693

Phase-field models in materials science
journal, July 2009


Phase-Field Models for Microstructure Evolution
journal, August 2002


Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review
journal, June 2008


Solidification microstructures and solid-state parallels: Recent developments, future directions
journal, February 2009


Kinetics of Crystal Etching Limited by Terrace Dissolution
journal, January 2010

  • Snyder, J.; Erlebacher, J.
  • Journal of The Electrochemical Society, Vol. 157, Issue 3
  • DOI: 10.1149/1.3280299

Continuous growth model for interface motion during alloy solidification
journal, August 1988


Solute trapping and solute drag in a phase-field model of rapid solidification
journal, September 1998


Spinodal decomposition in ternary systems
journal, October 1971


An analysis of clustering and ordering in multicomponent solid solutions—I. Stability criteria
journal, January 1972


Crystallization microstructure in transparent monotectic alloys
journal, September 1986

  • Kaukler, William F.; Frazier, Donald O.
  • Nature, Vol. 323, Issue 6083
  • DOI: 10.1038/323050a0

On The Instability Of Jets
journal, November 1878

  • Rayleigh, Lord
  • Proceedings of the London Mathematical Society, Vol. s1-10, Issue 1
  • DOI: 10.1112/plms/s1-10.1.4

Shape instabilities of eutectic composites at elevated temperatures
journal, June 1971


Universality and self-similarity in pinch-off of rods by bulk diffusion
journal, August 2010

  • Aagesen, Larry K.; Johnson, Anthony E.; Fife, Julie L.
  • Nature Physics, Vol. 6, Issue 10
  • DOI: 10.1038/nphys1737

Diffusion in copper and copper alloys. Part III. Diffusion in systems involving elements of the groups IA, IIA, IIIB, IVB, VB, VIB, and VIIB
journal, January 1975

  • Butrymowicz, Daniel B.; Manning, John R.; Read, Michael E.
  • Journal of Physical and Chemical Reference Data, Vol. 4, Issue 1
  • DOI: 10.1063/1.555516

The structures expected in a simple ternary eutectic system: Part II. The Al-Ag-Cu ternary system
journal, August 1980

  • Mccartney, D. G.; Jordan, R. M.; Hunt, J. D.
  • Metallurgical Transactions A, Vol. 11, Issue 8
  • DOI: 10.1007/BF02653478

Large scale phase-field simulations of directional ternary eutectic solidification
journal, July 2015


Phase-field model for solidification of ternary alloys coupled with thermodynamic database
journal, March 2003


Multicomponent alloy solidification: Phase-field modeling and simulations
journal, April 2005


    Works referencing / citing this record:

    A Trimodal Porous Cobalt‐Based Electrocatalyst for Enhanced Oxygen Evolution
    journal, July 2019

    • Cao, Zhen; Zhou, Tingting; Chen, Yan‐Li
    • Advanced Materials Interfaces, Vol. 6, Issue 17
    • DOI: 10.1002/admi.201900381

    Bi-continuous pattern formation in thin films via solid-state interfacial dealloying studied by multimodal characterization
    journal, January 2019

    • Zhao, Chonghang; Kisslinger, Kim; Huang, Xiaojing
    • Materials Horizons, Vol. 6, Issue 10
    • DOI: 10.1039/c9mh00669a

    A Trimodal Porous Cobalt‐Based Electrocatalyst for Enhanced Oxygen Evolution
    journal, July 2019

    • Cao, Zhen; Zhou, Tingting; Chen, Yan‐Li
    • Advanced Materials Interfaces, Vol. 6, Issue 17
    • DOI: 10.1002/admi.201900381

    Bi-continuous pattern formation in thin films via solid-state interfacial dealloying studied by multimodal characterization
    journal, January 2019

    • Zhao, Chonghang; Kisslinger, Kim; Huang, Xiaojing
    • Materials Horizons, Vol. 6, Issue 10
    • DOI: 10.1039/c9mh00669a

    Solid State Porous Metal Production: A Review of the Capabilities, Characteristics, and Challenges
    journal, January 2018

    • Atwater, Mark A.; Guevara, Laura N.; Darling, Kris A.
    • Advanced Engineering Materials, Vol. 20, Issue 7
    • DOI: 10.1002/adem.201700766

    Beating Thermal Coarsening in Nanoporous Materials via High‐Entropy Design
    journal, December 2019

    • Joo, Soo‐Hyun; Bae, Jae Wung; Park, Won‐Young
    • Advanced Materials, Vol. 32, Issue 6
    • DOI: 10.1002/adma.201906160

    Nanoporous magnesium
    journal, August 2018

    • Okulov, Ilya Vladimirovich; Lamaka, Sviatlana V.; Wada, Takeshi
    • Nano Research, Vol. 11, Issue 12
    • DOI: 10.1007/s12274-018-2167-9

    Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone
    journal, February 2017


    Local heterogeneity in the mechanical properties of bicontinuous composites made by liquid metal dealloying
    journal, December 2016

    • McCue, Ian; Gaskey, Bernard; Crawford, Bryan
    • Applied Physics Letters, Vol. 109, Issue 23
    • DOI: 10.1063/1.4971776

    Self-organization of helium precipitates into elongated channels within metal nanolayers
    journal, November 2017


    Pattern formation during electrochemical and liquid metal dealloying
    journal, January 2018

    • McCue, Ian; Karma, Alain; Erlebacher, Jonah
    • MRS Bulletin, Vol. 43, Issue 1
    • DOI: 10.1557/mrs.2017.301