DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Defect-Tolerant Diffusion Channels for Mg2+ Ions in Ribbon-Type Borates: Structural Insights into Potential Battery Cathodes MgVBO4 and Mgx Fe2–xB2O5

Abstract

The reversible room temperature intercalation of Mg2+ ions is difficult to achieve, but may offer substantial advantages in the design of next-generation batteries if this electrochemical process can be successfully realized. Two types of quadruple ribbon-type transition metal borates (MgxFe2-xB2O5 and MgVBO4) with high theoretical capacities (186 mAh/g and 360 mAh/g) have been synthesized and structurally characterized through the combined Rietveld refinement of synchrotron and time-of-flight neutron diffraction data. Neither MgVBO4 nor MgxFe2-xB2O5 can be chemically oxidized at room temperature, though Mg can be dynamically removed from the latter phase at elevated temperatures (approximately 200 - 500 °C). Findings show that Mg diffusion in the MgxFe2-xB2O5 structure is more facile for the inner two octahedral sites than for the two outer octahedral sites in the ribbons, a result supported by both the refined site occupancies after Mg removal and by bond valence sum difference map calculations of diffusion paths in the pristine material. Mg diffusion in this pyroborate MgxFe2-xB2O5 framework is also found to be tolerant to the presence of Mg/Fe disorder since Mg ions can diffuse through interstitial channels which bypass Fe-containing sites.

Authors:
 [1];  [2];  [3]
  1. Stony Brook Univ., NY (United States). Dept. of Chemistry
  2. Stony Brook Univ., NY (United States). Dept. of Chemistry; Univ. of Cambridge (United Kingdom)
  3. Stony Brook Univ., NY (United States). Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1239784
Report Number(s):
BNL-111676-2015-JA
Journal ID: ISSN 0897-4756; R&D Project: CO009; KC0302010
Grant/Contract Number:  
SC0012583; AC02-98CH10086; AC05-00OR22725; AC02-06CH11357; SC0001294
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 27; Journal Issue: 13; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Bo, Shou-Hang, Grey, Clare P., and Khalifah, Peter G. Defect-Tolerant Diffusion Channels for Mg2+ Ions in Ribbon-Type Borates: Structural Insights into Potential Battery Cathodes MgVBO4 and Mgx Fe2–xB2O5. United States: N. p., 2015. Web. doi:10.1021/acs.chemmater.5b01040.
Bo, Shou-Hang, Grey, Clare P., & Khalifah, Peter G. Defect-Tolerant Diffusion Channels for Mg2+ Ions in Ribbon-Type Borates: Structural Insights into Potential Battery Cathodes MgVBO4 and Mgx Fe2–xB2O5. United States. https://doi.org/10.1021/acs.chemmater.5b01040
Bo, Shou-Hang, Grey, Clare P., and Khalifah, Peter G. Wed . "Defect-Tolerant Diffusion Channels for Mg2+ Ions in Ribbon-Type Borates: Structural Insights into Potential Battery Cathodes MgVBO4 and Mgx Fe2–xB2O5". United States. https://doi.org/10.1021/acs.chemmater.5b01040. https://www.osti.gov/servlets/purl/1239784.
@article{osti_1239784,
title = {Defect-Tolerant Diffusion Channels for Mg2+ Ions in Ribbon-Type Borates: Structural Insights into Potential Battery Cathodes MgVBO4 and Mgx Fe2–xB2O5},
author = {Bo, Shou-Hang and Grey, Clare P. and Khalifah, Peter G.},
abstractNote = {The reversible room temperature intercalation of Mg2+ ions is difficult to achieve, but may offer substantial advantages in the design of next-generation batteries if this electrochemical process can be successfully realized. Two types of quadruple ribbon-type transition metal borates (MgxFe2-xB2O5 and MgVBO4) with high theoretical capacities (186 mAh/g and 360 mAh/g) have been synthesized and structurally characterized through the combined Rietveld refinement of synchrotron and time-of-flight neutron diffraction data. Neither MgVBO4 nor MgxFe2-xB2O5 can be chemically oxidized at room temperature, though Mg can be dynamically removed from the latter phase at elevated temperatures (approximately 200 - 500 °C). Findings show that Mg diffusion in the MgxFe2-xB2O5 structure is more facile for the inner two octahedral sites than for the two outer octahedral sites in the ribbons, a result supported by both the refined site occupancies after Mg removal and by bond valence sum difference map calculations of diffusion paths in the pristine material. Mg diffusion in this pyroborate MgxFe2-xB2O5 framework is also found to be tolerant to the presence of Mg/Fe disorder since Mg ions can diffuse through interstitial channels which bypass Fe-containing sites.},
doi = {10.1021/acs.chemmater.5b01040},
journal = {Chemistry of Materials},
number = 13,
volume = 27,
place = {United States},
year = {Wed Jun 10 00:00:00 EDT 2015},
month = {Wed Jun 10 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mg rechargeable batteries: an on-going challenge
journal, January 2013

  • Yoo, Hyun Deog; Shterenberg, Ivgeni; Gofer, Yosef
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2265-2279
  • DOI: 10.1039/c3ee40871j

MgFePO 4 F as a feasible cathode material for magnesium batteries
journal, January 2014

  • Huang, Zhen-Dong; Masese, Titus; Orikasa, Yuki
  • J. Mater. Chem. A, Vol. 2, Issue 30
  • DOI: 10.1039/C4TA01779J

A high energy-density tin anode for rechargeable magnesium-ion batteries
journal, January 2013

  • Singh, Nikhilendra; Arthur, Timothy S.; Ling, Chen
  • Chem. Commun., Vol. 49, Issue 2
  • DOI: 10.1039/C2CC34673G

Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries
journal, August 2012

  • Guo, Yong-sheng; Zhang, Fan; Yang, Jun
  • Energy & Environmental Science, Vol. 5, Issue 10, p. 9100-9106
  • DOI: 10.1039/c2ee22509c

α-MnO2 as a cathode material for rechargeable Mg batteries
journal, September 2012


Magnesium insertion electrodes for rechargeable nonaqueous batteries — a competitive alternative to lithium?
journal, September 1999


Prototype systems for rechargeable magnesium batteries
journal, October 2000

  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

The Spinel Phase of LiMn[sub 2]O[sub 4] as a Cathode in Secondary Lithium Cells
journal, January 1991

  • Tarascon, J. M.
  • Journal of The Electrochemical Society, Vol. 138, Issue 10
  • DOI: 10.1149/1.2085330

Lithium Iron Borates as High-Capacity Battery Electrodes
journal, June 2010

  • Yamada, Atsuo; Iwane, Nobuyuki; Harada, Yu
  • Advanced Materials, Vol. 22, Issue 32
  • DOI: 10.1002/adma.201001039

Degradation and (de)lithiation processes in the high capacity battery material LiFeBO3
journal, January 2012

  • Bo, Shou-Hang; Wang, Feng; Janssen, Yuri
  • Journal of Materials Chemistry, Vol. 22, Issue 18
  • DOI: 10.1039/c2jm16436a

Titanium-III warwickites: A family of one-dimensional disordered magnetic systems
journal, December 1994

  • Fernandes, J. C.; Guimarães, R. B.; Continentino, M. A.
  • Physical Review B, Vol. 50, Issue 22
  • DOI: 10.1103/PhysRevB.50.16754

Crystal structure and chemistry of yuanfuliite and its relationships with warwickite [Crystal structure and chemistry of yuanfuliite and its relationships with warwickite]
journal, May 1999

  • Appel, Peter W. Uitterdijk; Bigi, Simona; Brigatti, Maria Franca
  • European Journal of Mineralogy, Vol. 11, Issue 3
  • DOI: 10.1127/ejm/11/3/0483

Incommensurate Charge Order Phase in Fe 2 OBO 3 due to Geometrical Frustration
journal, December 2007


Charge Order Superstructure with Integer Iron Valence in Fe 2 OBO 3
journal, August 2007


Refinement of the crystal structure of triclinic magnesium pyroborate
journal, March 1959

  • Block, S.; Burley, G.; Perloff, A.
  • Journal of Research of the National Bureau of Standards, Vol. 62, Issue 3
  • DOI: 10.6028/jres.062.017

Triclinic Mg2B2O5
journal, March 1995

  • Guo, G. C.; Cheng, W. D.; Chen, J. T.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 51, Issue 3
  • DOI: 10.1107/S0108270194009303

The crystal structure of magnesium pyroborate
journal, September 1952


Corrigendum to “Synthesis, crystal structure and characterization of iron pyroborate (Fe2B2O5) single crystals” [J. Solid State Chem. 182 (2009) 2004–2009]
journal, October 2009

  • Kawano, Tetsuya; Morito, Haruhiko; Yamada, Takahiro
  • Journal of Solid State Chemistry, Vol. 182, Issue 10
  • DOI: 10.1016/j.jssc.2009.08.008

Study of the Insertion/Deinsertion Mechanism of Sodium into Na 0.44 MnO 2
journal, April 2007

  • Sauvage, F.; Laffont, L.; Tarascon, J. -M.
  • Inorganic Chemistry, Vol. 46, Issue 8
  • DOI: 10.1021/ic0700250

Preparation, crystal structure and photoluminescence of Mn2+-doped magnesium pyroborates solid solutions, (Mg1–xMnx)2B2O5
journal, November 2010


Strongly disordered Heisenberg spin-1 chains: Vanadium warwickites
journal, April 1996

  • Continentino, M. A.; Fernandes, J. C.; Guimaräes, R. B.
  • Philosophical Magazine B, Vol. 73, Issue 4
  • DOI: 10.1080/13642819608239137

Synthesis of Magnesium Borate (Mg 2 B 2 O 5 ) Nanowires by Chemical Vapor Deposition Method
journal, June 2004

  • Li, Yan; Fan, Zhiyong; Lu, Jia G.
  • Chemistry of Materials, Vol. 16, Issue 13
  • DOI: 10.1021/cm0496366

Catalyst-Free Synthesis, Structural, and Mechanical Characterization of Twinned Mg 2 B 2 O 5 Nanowires
journal, February 2008


Relationship between bond valence and bond softness of alkali halides and chalcogenides
journal, May 2001


Chemical and steric constraints in inorganic solids
journal, October 1992


Influence of Chemical and Spatial Constraints on the Structures of Inorganic Compounds
journal, June 1997


Proton ordering in the Peierls-distorted hydrogen molybdenum bronze H 0.33 MoO 3 : structure and physical properties
journal, December 1993

  • Adams, S.; Ehses, K. -H.; Spilker, J.
  • Acta Crystallographica Section B Structural Science, Vol. 49, Issue 6
  • DOI: 10.1107/S0108768193006329

Determining Ionic Conductivity from Structural Models of Fast Ionic Conductors
journal, May 2000


Application of the bond valence method to reverse Monte Carlo produced structural models of superionic glasses
journal, June 2001


Structural Modulation in the High Capacity Battery Cathode Material LiFeBO 3
journal, July 2012

  • Janssen, Yuri; Middlemiss, Derek S.; Bo, Shou-Hang
  • Journal of the American Chemical Society, Vol. 134, Issue 30
  • DOI: 10.1021/ja301881c

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries
journal, January 2005

  • Whittingham, M. Stanley; Song, Yanning; Lutta, Samuel
  • Journal of Materials Chemistry, Vol. 15, Issue 33
  • DOI: 10.1039/b501961c

Electrochemical Property:  Structure Relationships in Monoclinic Li 3 - y V 2 (PO 4 ) 3
journal, August 2003

  • Yin, S. -C.; Grondey, H.; Strobel, P.
  • Journal of the American Chemical Society, Vol. 125, Issue 34
  • DOI: 10.1021/ja034565h

Phase Diagram of Li[sub x]FePO[sub 4]
journal, January 2006

  • Dodd, J. L.; Yazami, R.; Fultz, B.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 3
  • DOI: 10.1149/1.2164548

First-principles study of the magnesiation of olivines: redox reaction mechanism, electrochemical and thermodynamic properties
journal, January 2012

  • Ling, Chen; Banerjee, Debasish; Song, Wei
  • Journal of Materials Chemistry, Vol. 22, Issue 27
  • DOI: 10.1039/c2jm31122d

Experimental visualization of lithium diffusion in LixFePO4
journal, August 2008

  • Nishimura, Shin-ichi; Kobayashi, Genki; Ohoyama, Kenji
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2251

Particle Size Dependence of the Ionic Diffusivity
journal, October 2010

  • Malik, Rahul; Burch, Damian; Bazant, Martin
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl1023595

Works referencing / citing this record:

Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries
journal, September 2015


Controlled hydroxy-fluorination reaction of anatase to promote Mg 2+ mobility in rechargeable magnesium batteries
journal, January 2018

  • Ma, Jiwei; Koketsu, Toshinari; Morgan, Benjamin. J.
  • Chemical Communications, Vol. 54, Issue 72
  • DOI: 10.1039/c8cc04136a