skip to main content

DOE PAGESDOE PAGES

Title: Self-consistent Simulations and Analysis of the Coupled-Bunch Instability for Arbitrary Multi-Bunch Configurations

A novel algorithm for self-consistent simulations of long-range wakefield effects has been developed and applied to the study of both longitudinal and transverse coupled-bunch instabilities at NSLS-II. The algorithm is implemented in the new parallel tracking code space (self-consistent parallel algorithm for collective effects) discussed in the paper. The code is applicable for accurate beam dynamics simulations in cases where both bunch-to-bunch and intrabunch motions need to be taken into account, such as chromatic head-tail effects on the coupled-bunch instability of a beam with a nonuniform filling pattern, or multibunch and single-bunch effects of a passive higher-harmonic cavity. The numerical simulations have been compared with analytical studies. For a beam with an arbitrary filling pattern, intensity-dependent complex frequency shifts have been derived starting from a system of coupled Vlasov equations. The analytical formulas and numerical simulations confirm that the analysis is reduced to the formulation of an eigenvalue problem based on the known formulas of the complex frequency shifts for the uniform filling pattern case.
Authors:
 [1] ;  [1] ;  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Report Number(s):
BNL-113328-2016-JA
Journal ID: ISSN 2469-9888
Grant/Contract Number:
SC00112704; AC02-98CH10886
Type:
Published Article
Journal Name:
Physical Review Accelerators and Beams (Online)
Additional Journal Information:
Journal Name: Physical Review Accelerators and Beams (Online); Journal Volume: 19; Journal ID: ISSN 2469-9888
Publisher:
American Physical Society (APS)
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; NSLS-II; ALGORITHM; COLLECTIVE
OSTI Identifier:
1239436
Alternate Identifier(s):
OSTI ID: 1340422