DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans

Abstract

Methanosarcina acetivorans is a model archaeon with renewed interest due to its unique reversible methane production pathways. However, the mechanism and relevant pathways implicated in (co)utilizing novel carbon substrates in this organism are still not fully understood. This paper provides a comprehensive inventory of thermodynamically feasible routes for anaerobic methane oxidation, co-reactant utilization, and maximum carbon yields of major biofuel candidates by M. acetivorans. Here, an updated genome-scale metabolic model of M. acetivorans is introduced (iMAC868 containing 868 genes, 845 reactions, and 718 metabolites) by integrating information from two previously reconstructed metabolic models (i.e., iVS941 and iMB745), modifying 17 reactions, adding 24 new reactions, and revising 64 gene-proteinreaction associations based on newly available information. The new model establishes improved predictions of growth yields on native substrates and is capable of correctly predicting the knockout outcomes for 27 out of 28 gene deletion mutants. By tracing a bifurcated electron flow mechanism, the iMAC868 model predicts thermodynamically feasible (co)utilization pathway of methane and bicarbonate using various terminal electron acceptors through the reversal of the aceticlastic pathway. In conclusion, this effort paves the way in informing the search for thermodynamically feasible ways of (co)utilizing novel carbon substrates in the domain Archaea.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1618800
Alternate Identifier(s):
OSTI ID: 1238778
Grant/Contract Number:  
ARPA-E DE-AR0000431; AR0000431
Resource Type:
Published Article
Journal Name:
Microbial Cell Factories
Additional Journal Information:
Journal Name: Microbial Cell Factories Journal Volume: 15 Journal Issue: 1; Journal ID: ISSN 1475-2859
Publisher:
Springer Science + Business Media
Country of Publication:
United Kingdom
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Methanosarcina acetivorans; genome-scale metabolic model; methane utilization

Citation Formats

Nazem-Bokaee, Hadi, Gopalakrishnan, Saratram, Ferry, James G., Wood, Thomas K., and Maranas, Costas D. Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. United Kingdom: N. p., 2016. Web. doi:10.1186/s12934-015-0404-4.
Nazem-Bokaee, Hadi, Gopalakrishnan, Saratram, Ferry, James G., Wood, Thomas K., & Maranas, Costas D. Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. United Kingdom. https://doi.org/10.1186/s12934-015-0404-4
Nazem-Bokaee, Hadi, Gopalakrishnan, Saratram, Ferry, James G., Wood, Thomas K., and Maranas, Costas D. Sun . "Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans". United Kingdom. https://doi.org/10.1186/s12934-015-0404-4.
@article{osti_1618800,
title = {Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans},
author = {Nazem-Bokaee, Hadi and Gopalakrishnan, Saratram and Ferry, James G. and Wood, Thomas K. and Maranas, Costas D.},
abstractNote = {Methanosarcina acetivorans is a model archaeon with renewed interest due to its unique reversible methane production pathways. However, the mechanism and relevant pathways implicated in (co)utilizing novel carbon substrates in this organism are still not fully understood. This paper provides a comprehensive inventory of thermodynamically feasible routes for anaerobic methane oxidation, co-reactant utilization, and maximum carbon yields of major biofuel candidates by M. acetivorans. Here, an updated genome-scale metabolic model of M. acetivorans is introduced (iMAC868 containing 868 genes, 845 reactions, and 718 metabolites) by integrating information from two previously reconstructed metabolic models (i.e., iVS941 and iMB745), modifying 17 reactions, adding 24 new reactions, and revising 64 gene-proteinreaction associations based on newly available information. The new model establishes improved predictions of growth yields on native substrates and is capable of correctly predicting the knockout outcomes for 27 out of 28 gene deletion mutants. By tracing a bifurcated electron flow mechanism, the iMAC868 model predicts thermodynamically feasible (co)utilization pathway of methane and bicarbonate using various terminal electron acceptors through the reversal of the aceticlastic pathway. In conclusion, this effort paves the way in informing the search for thermodynamically feasible ways of (co)utilizing novel carbon substrates in the domain Archaea.},
doi = {10.1186/s12934-015-0404-4},
journal = {Microbial Cell Factories},
number = 1,
volume = 15,
place = {United Kingdom},
year = {Sun Jan 17 00:00:00 EST 2016},
month = {Sun Jan 17 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1186/s12934-015-0404-4

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Growth yield predictions of iMAC868 model of M. acetivorans compared with predictions of previous models iVS941 and iMB745

Save / Share:

Works referenced in this record:

Genetic manipulation of Methanosarcina spp.
journal, January 2012


The Biochemistry of Methane Oxidation
journal, June 2007


The Genome of M. acetivorans Reveals Extensive Metabolic and Physiological Diversity
journal, April 2002


Methane oxidation by anaerobic archaea for conversion to liquid fuels
journal, November 2014

  • Mueller, Thomas J.; Grisewood, Matthew J.; Nazem-Bokaee, Hadi
  • Journal of Industrial Microbiology & Biotechnology, Vol. 42, Issue 3
  • DOI: 10.1007/s10295-014-1548-7

Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium
journal, December 1994

  • Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.
  • Global Biogeochemical Cycles, Vol. 8, Issue 4
  • DOI: 10.1029/94GB01800

Proteome of Methanosarcina a cetivorans Part I:  An Expanded View of the Biology of the Cell
journal, February 2005

  • Li, Qingbo; Li, Lingyun; Rejtar, Tomas
  • Journal of Proteome Research, Vol. 4, Issue 1
  • DOI: 10.1021/pr049832c

Genetic Analysis of the Methanol- and Methylamine-Specific Methyltransferase 2 Genes of Methanosarcina acetivorans C2A
journal, March 2008

  • Bose, A.; Pritchett, M. A.; Metcalf, W. W.
  • Journal of Bacteriology, Vol. 190, Issue 11
  • DOI: 10.1128/JB.00117-08

Biological Methane Oxidation: Regulation, Biochemistry, and Active Site Structure of Particulate Methane Monooxygenase
journal, January 2004

  • Lieberman, Raquel L.; Rosenzweig, Amy C.
  • Critical Reviews in Biochemistry and Molecular Biology, Vol. 39, Issue 3
  • DOI: 10.1080/10409230490475507

Methane-consuming archaebacteria in marine sediments
journal, April 1999

  • Hinrichs, Kai-Uwe; Hayes, John M.; Sylva, Sean P.
  • Nature, Vol. 398, Issue 6730
  • DOI: 10.1038/19751

Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina
journal, January 2007

  • Moran, James J.; House, Christopher H.; Thomas, B.
  • Journal of Geophysical Research, Vol. 112, Issue G2
  • DOI: 10.1029/2006JG000268

Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States
journal, February 2014


Short-Lived Climate Pollution
journal, May 2014


Manganese- and Iron-Dependent Marine Methane Oxidation
journal, July 2009


An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models
journal, October 2014

  • Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5893

Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO).
journal, January 1996


Metabolic engineering of Escherichia coli for 1-butanol production
journal, November 2008

  • Atsumi, Shota; Cann, Anthony F.; Connor, Michael R.
  • Metabolic Engineering, Vol. 10, Issue 6, p. 305-311
  • DOI: 10.1016/j.ymben.2007.08.003

Class I and class II lysyl-tRNA synthetase mutants and the genetic encoding of pyrrolysine in Methanosarcina spp.: lysyl-tRNA synthetases in Methanosarcina
journal, May 2007


TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels
journal, January 2007

  • Ren, Q.; Chen, K.; Paulsen, I. T.
  • Nucleic Acids Research, Vol. 35, Issue Database
  • DOI: 10.1093/nar/gkl925

New perspectives on anaerobic methane oxidation
journal, October 2000


Proteome of Methanosarcina a cetivorans Part II:  Comparison of Protein Levels in Acetate- and Methanol-Grown Cells
journal, February 2005

  • Li, Qingbo; Li, Lingyun; Rejtar, Tomas
  • Journal of Proteome Research, Vol. 4, Issue 1
  • DOI: 10.1021/pr049831k

Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
journal, August 2011

  • Schellenberger, Jan; Que, Richard; Fleming, Ronan M. T.
  • Nature Protocols, Vol. 6, Issue 9
  • DOI: 10.1038/nprot.2011.308

Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically
journal, November 2011

  • Shima, Seigo; Krueger, Martin; Weinert, Tobias
  • Nature, Vol. 481, Issue 7379
  • DOI: 10.1038/nature10663

The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
journal, October 2003


Calculation of Standard Transformed Gibbs Energies and Standard Transformed Enthalpies of Biochemical Reactants
journal, May 1998


Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A
journal, December 2011

  • Benedict, M. N.; Gonnerman, M. C.; Metcalf, W. W.
  • Journal of Bacteriology, Vol. 194, Issue 4
  • DOI: 10.1128/JB.06040-11

Production and Consumption of H2 during Growth of Methanosarcina spp. on Acetate
journal, January 1985


Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation
journal, January 2012

  • Schlegel, K.; Leone, V.; Faraldo-Gomez, J. D.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 3
  • DOI: 10.1073/pnas.1115796109

An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics
journal, November 2006

  • Lessner, D. J.; Li, L.; Li, Q.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 47
  • DOI: 10.1073/pnas.0608833103

KEGG: Kyoto Encyclopedia of Genes and Genomes
journal, January 1999

  • Ogata, H.; Goto, S.; Sato, K.
  • Nucleic Acids Research, Vol. 27, Issue 1
  • DOI: 10.1093/nar/27.1.29

In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans
journal, June 2009


Methane as Fuel for Anaerobic Microorganisms
journal, March 2008

  • Thauer, Rudolf K.; Shima, Seigo
  • Annals of the New York Academy of Sciences, Vol. 1125, Issue 1
  • DOI: 10.1196/annals.1419.000

Anaerobic Oxidation of Methane: Progress with an Unknown Process
journal, October 2009


BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA
journal, November 2012

  • Schomburg, Ida; Chang, Antje; Placzek, Sandra
  • Nucleic Acids Research, Vol. 41, Issue D1
  • DOI: 10.1093/nar/gks1049

Methane formation and methane oxidation by methanogenic bacteria.
journal, January 1979


Methanosarcina acetivorans sp. nov., an Acetotrophic Methane-Producing Bacterium Isolated from Marine Sediments
journal, January 1984

  • Sowers, Kevin R.; Baron, Stephen F.; Ferry, James G.
  • Applied and Environmental Microbiology, Vol. 47, Issue 5
  • DOI: 10.1128/AEM.47.5.971-978.1984

Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase
journal, February 2010


Unconventional gas – A review of regional and global resource estimates
journal, June 2013


Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
journal, July 2013

  • Haroon, Mohamed F.; Hu, Shihu; Shi, Ying
  • Nature, Vol. 500, Issue 7464
  • DOI: 10.1038/nature12375

The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
journal, November 2011

  • Caspi, R.; Altman, T.; Dreher, K.
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr1014

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels
journal, December 2008

  • Lee, Sung Kuk; Chou, Howard; Ham, Timothy S.
  • Current Opinion in Biotechnology, Vol. 19, Issue 6, p. 556-563
  • DOI: 10.1016/j.copbio.2008.10.014

Rethinking biological activation of methane and conversion to liquid fuels
journal, April 2014


Quantitative Proteomic and Microarray Analysis of the Archaeon M ethanosarcina acetivorans Grown with Acetate versus Methanol
journal, February 2007

  • Li, Lingyun; Li, Qingbo; Rohlin, Lars
  • Journal of Proteome Research, Vol. 6, Issue 2
  • DOI: 10.1021/pr060383l

Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation
journal, February 2013

  • Buckel, Wolfgang; Thauer, Rudolf K.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 2
  • DOI: 10.1016/j.bbabio.2012.07.002

The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane
journal, June 2010

  • Scheller, Silvan; Goenrich, Meike; Boecher, Reinhard
  • Nature, Vol. 465, Issue 7298
  • DOI: 10.1038/nature09015

Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group
journal, February 2010


Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: An unusual way of life for a methanogenic archaeon
journal, November 2004

  • Rother, M.; Metcalf, W. W.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 48
  • DOI: 10.1073/pnas.0407486101

Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens
journal, July 2014

  • Welte, Cornelia; Deppenmeier, Uwe
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1837, Issue 7
  • DOI: 10.1016/j.bbabio.2013.12.002

Trace methane oxidation studied in several Euryarchaeota under diverse conditions
journal, January 2005

  • Moran, James J.; House, Christopher H.; Freeman, Katherine H.
  • Archaea, Vol. 1, Issue 5
  • DOI: 10.1155/2005/650670

Methanogenic archaea: ecologically relevant differences in energy conservation
journal, June 2008

  • Thauer, Rudolf K.; Kaster, Anne-Kristin; Seedorf, Henning
  • Nature Reviews Microbiology, Vol. 6, Issue 8
  • DOI: 10.1038/nrmicro1931

Electron Transport in the Pathway of Acetate Conversion to Methane in the Marine Archaeon Methanosarcina acetivorans
journal, December 2005


The Rush to Drill for Natural Gas: A Public Health Cautionary Tale
journal, May 2011


Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans
journal, January 2011

  • Satish Kumar, Vinay; Ferry, James G.; Maranas, Costas D.
  • BMC Systems Biology, Vol. 5, Issue 1
  • DOI: 10.1186/1752-0509-5-28

Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex
journal, November 2012

  • Schlegel, Katharina; Welte, Cornelia; Deppenmeier, Uwe
  • FEBS Journal, Vol. 279, Issue 24
  • DOI: 10.1111/febs.12031

Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea
journal, January 2011

  • Kaster, A. -K.; Moll, J.; Parey, K.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 7
  • DOI: 10.1073/pnas.1016761108

Characterization of the RnfB and RnfG Subunits of the Rnf Complex from the Archaeon Methanosarcina acetivorans
journal, May 2014


Reversing methanogenesis to capture methane for liquid biofuel precursors
journal, January 2016

  • Soo, Valerie W. C.; McAnulty, Michael J.; Tripathi, Arti
  • Microbial Cell Factories, Vol. 15, Issue 1
  • DOI: 10.1186/s12934-015-0397-z

Methyl Sulfide Production by a Novel Carbon Monoxide Metabolism in Methanosarcina acetivorans
journal, November 2007

  • Moran, J. J.; House, C. H.; Vrentas, J. M.
  • Applied and Environmental Microbiology, Vol. 74, Issue 2
  • DOI: 10.1128/AEM.01750-07

Opportunity, challenges and policy choices for China on the development of shale gas
journal, September 2013


What is flux balance analysis?
journal, March 2010

  • Orth, Jeffrey D.; Thiele, Ines; Palsson, Bernhard Ø
  • Nature Biotechnology, Vol. 28, Issue 3
  • DOI: 10.1038/nbt.1614

Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane
journal, September 2008


Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways
journal, December 2013


Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions: Methane, microbes and models
journal, May 2013

  • Nazaries, Loïc; Murrell, J. Colin; Millard, Pete
  • Environmental Microbiology, Vol. 15, Issue 9
  • DOI: 10.1111/1462-2920.12149

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.