skip to main content


Title: Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers

Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pin-hole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperature to guide the nucleation and grain growth process. The domain size reached 80–250 μm in 1.5–2 μm thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4,N4'-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)–N4,N4'-diphenylbiphenyl-4,4'-diamine covered ITO substrates. Furthermore, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 μm which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Univ. of Nebraska, Lincoln, NE (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 8; Journal Issue: 5; Journal ID: ISSN 1754-5692
Royal Society of Chemistry
Research Org:
Univ. of Nebraska, Lincoln, NE (United States)
Sponsoring Org:
Country of Publication:
United States
OSTI Identifier: