DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

Abstract

X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm₋3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.

Authors:
 [1];  [1];  [2];  [2];  [2];  [2];  [2];  [2]
  1. Johns Hopkins Univ., Baltimore, MD (United States). Department of Physics and Astronomy
  2. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1258591
Alternate Identifier(s):
OSTI ID: 1237775
Grant/Contract Number:  
NA0001835; DENA0001835
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 87; Journal Issue: 2; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Valdivia, M. P., Stutman, D., Stoeckl, C., Theobald, W., Mileham, C., Begishev, I. A., Bromage, J., and Regan, S. P. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics. United States: N. p., 2016. Web. doi:10.1063/1.4941441.
Valdivia, M. P., Stutman, D., Stoeckl, C., Theobald, W., Mileham, C., Begishev, I. A., Bromage, J., & Regan, S. P. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics. United States. https://doi.org/10.1063/1.4941441
Valdivia, M. P., Stutman, D., Stoeckl, C., Theobald, W., Mileham, C., Begishev, I. A., Bromage, J., and Regan, S. P. Wed . "An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics". United States. https://doi.org/10.1063/1.4941441. https://www.osti.gov/servlets/purl/1258591.
@article{osti_1258591,
title = {An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics},
author = {Valdivia, M. P. and Stutman, D. and Stoeckl, C. and Theobald, W. and Mileham, C. and Begishev, I. A. and Bromage, J. and Regan, S. P.},
abstractNote = {X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm₋3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.},
doi = {10.1063/1.4941441},
journal = {Review of Scientific Instruments},
number = 2,
volume = 87,
place = {United States},
year = {Wed Feb 10 00:00:00 EST 2016},
month = {Wed Feb 10 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser-irradiated Cu foil targets
journal, April 2006

  • Theobald, W.; Akli, K.; Clarke, R.
  • Physics of Plasmas, Vol. 13, Issue 4
  • DOI: 10.1063/1.2188912

Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources
journal, March 2006

  • Pfeiffer, Franz; Weitkamp, Timm; Bunk, Oliver
  • Nature Physics, Vol. 2, Issue 4, p. 258-261
  • DOI: 10.1038/nphys265

A spherical crystal imager for OMEGA EP
journal, March 2012

  • Stoeckl, C.; Fiksel, G.; Guy, D.
  • Review of Scientific Instruments, Vol. 83, Issue 3
  • DOI: 10.1063/1.3693348

High-intensity laser-plasma interactions in the refluxing limit
journal, May 2008

  • Nilson, P. M.; Theobald, W.; Myatt, J.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2889449

Noise properties of grating-based x-ray phase contrast computed tomography: Noise properties of phase contrast CT
journal, July 2011

  • Köhler, Thomas; Jürgen Engel, Klaus; Roessl, Ewald
  • Medical Physics, Vol. 38, Issue S1
  • DOI: 10.1118/1.3532396

Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV
journal, July 2014

  • Valdivia, M. P.; Stutman, D.; Finkenthal, M.
  • Review of Scientific Instruments, Vol. 85, Issue 7
  • DOI: 10.1063/1.4885467

XWFP: an x-ray wavefront propagation software package for the IDL computer language
conference, October 2004


High-intensity laser-plasma interaction with wedge-shaped-cavity targets
journal, October 2010

  • Theobald, W.; Ovchinnikov, V.; Ivancic, S.
  • Physics of Plasmas, Vol. 17, Issue 10
  • DOI: 10.1063/1.3484217

Decoherence in a Talbot–Lau interferometer: the influence of molecular scattering
journal, December 2003


High-intensity laser interactions with mass-limited solid targets and implications for fast-ignition experiments on OMEGA EP
journal, May 2007

  • Myatt, J.; Theobald, W.; Delettrez, J. A.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2472371

Scaling hot-electron generation to long-pulse, high-intensity laser–solid interactions
journal, May 2011

  • Nilson, P. M.; Solodov, A. A.; Myatt, J. F.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3560569

Noise in x-ray grating-based phase-contrast imaging: Noise in x-ray grating-based phase-contrast imaging
journal, June 2011

  • Weber, Thomas; Bartl, Peter; Bayer, Florian
  • Medical Physics, Vol. 38, Issue 7
  • DOI: 10.1118/1.3592935

The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources
journal, October 2008


Comparison among Several Numerical Integration Methods for Kramers-Kronig Transformation
journal, August 1988


Talbot-Lau based Moiré deflectometry with non-coherent sources as potential High Energy Density plasma diagnostic
journal, October 2013

  • Valdivia, M. P.; Stutman, D.; Finkenthal, M.
  • Journal of Applied Physics, Vol. 114, Issue 16
  • DOI: 10.1063/1.4827186

Tomography with grating interferometers at low-brilliance sources
conference, August 2006


Phase Tomography by X-ray Talbot Interferometry for Biological Imaging
journal, June 2006

  • Momose, Atsushi; Yashiro, Wataru; Takeda, Yoshihiro
  • Japanese Journal of Applied Physics, Vol. 45, Issue 6A, p. 5254-5262
  • DOI: 10.1143/JJAP.45.5254

Talbot-Lau x-ray density diagnostic for High Energy Density plasmas
conference, May 2015

  • Valdivia, M. P.; Stutman, D.; Finkenthal, M.
  • 2015 IEEE 26th Symposium on Fusion Engineering (SOFE)
  • DOI: 10.1109/SOFE.2015.7482292

5?Hz, >250?mJ optical parametric chirped-pulse amplifier at 1053?nm
journal, January 2005

  • Bagnoud, Vincent; Begishev, Ildar A.; Guardalben, Mark J.
  • Optics Letters, Vol. 30, Issue 14
  • DOI: 10.1364/OL.30.001843

High-contrast optical-parametric amplifier as a front end of high-power laser systems
journal, January 2007

  • Dorrer, C.; Begishev, I. A.; Okishev, A. V.
  • Optics Letters, Vol. 32, Issue 15
  • DOI: 10.1364/OL.32.002143

High-Energy Petawatt Capability for the Omega Laser
journal, January 2005

  • Waxer, L. J.; Maywar, D. N.; Kelly, J. H.
  • Optics and Photonics News, Vol. 16, Issue 7
  • DOI: 10.1364/OPN.16.7.000030

Spatial characteristics of K α x-ray emission from relativistic femtosecond laser plasmas
journal, November 2003


Bulk heating of solid-density plasmas during high-intensity-laser plasma interactions
journal, January 2009


Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Laser-Solid Interactions
journal, December 2010


A generalization of Abel inversion to non-axisymmetric density distribution
journal, November 2001


Works referencing / citing this record:

X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot-Lau deflectometry
journal, October 2018

  • Valdivia, M. P.; Veloso, F.; Stutman, D.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039342

Talbot–Lau x-ray deflectometry phase-retrieval methods for electron density diagnostics in high-energy density experiments
journal, January 2018

  • Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian
  • Applied Optics, Vol. 57, Issue 2
  • DOI: 10.1364/ao.57.000138

Advanced high resolution x-ray diagnostic for HEDP experiments
journal, November 2018