DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

Abstract

In this paper, we present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 × 1020 cm-3 = 0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.

Authors:
 [1];  [1];  [1];  [2];  [1];  [3];  [3];  [3];  [3];  [3];  [2];  [2];  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. General Atomics, San Diego, CA (United States)
  3. Univ. of Rochester, Rochester, NY (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1237677
Alternate Identifier(s):
OSTI ID: 1234095
Report Number(s):
SAND-2015-6697J
Journal ID: ISSN 1070-664X; PHPAEN; 598946
Grant/Contract Number:  
AC04-94AL85000; FC02-04ER54789; FG02-04ER54786; NA0001944
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 12; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; plasma temperature; magnetic fields; plasma diagnostics; neutrons; magnetized plasmas

Citation Formats

Harvey-Thompson, Adam James, Sefkow, Adam B., Nagayama, Taisuke N., Wei, Mingsheng, Campbell, Edward Michael, Fiksel, Gennady, Chang, Po -Yu, Davies, Jonathan R., Barnak, Daniel H., Glebov, Vladimir Y., Fitzsimmons, Paul, Fooks, Julie, and Blue, Brent E. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion. United States: N. p., 2015. Web. doi:10.1063/1.4938047.
Harvey-Thompson, Adam James, Sefkow, Adam B., Nagayama, Taisuke N., Wei, Mingsheng, Campbell, Edward Michael, Fiksel, Gennady, Chang, Po -Yu, Davies, Jonathan R., Barnak, Daniel H., Glebov, Vladimir Y., Fitzsimmons, Paul, Fooks, Julie, & Blue, Brent E. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion. United States. https://doi.org/10.1063/1.4938047
Harvey-Thompson, Adam James, Sefkow, Adam B., Nagayama, Taisuke N., Wei, Mingsheng, Campbell, Edward Michael, Fiksel, Gennady, Chang, Po -Yu, Davies, Jonathan R., Barnak, Daniel H., Glebov, Vladimir Y., Fitzsimmons, Paul, Fooks, Julie, and Blue, Brent E. Tue . "Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion". United States. https://doi.org/10.1063/1.4938047. https://www.osti.gov/servlets/purl/1237677.
@article{osti_1237677,
title = {Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion},
author = {Harvey-Thompson, Adam James and Sefkow, Adam B. and Nagayama, Taisuke N. and Wei, Mingsheng and Campbell, Edward Michael and Fiksel, Gennady and Chang, Po -Yu and Davies, Jonathan R. and Barnak, Daniel H. and Glebov, Vladimir Y. and Fitzsimmons, Paul and Fooks, Julie and Blue, Brent E.},
abstractNote = {In this paper, we present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 × 1020 cm-3 = 0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.},
doi = {10.1063/1.4938047},
journal = {Physics of Plasmas},
number = 12,
volume = 22,
place = {United States},
year = {Tue Dec 22 00:00:00 EST 2015},
month = {Tue Dec 22 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion
journal, October 2014


Design of magnetized liner inertial fusion experiments using the Z facility
journal, July 2014

  • Sefkow, A. B.; Slutz, S. A.; Koning, J. M.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4890298

Three-dimensional electromagnetic model of the pulsed-power Z -pinch accelerator
journal, January 2010

  • Rose, D. V.; Welch, D. R.; Madrid, E. A.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 13, Issue 1
  • DOI: 10.1103/PhysRevSTAB.13.010402

Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
journal, July 2011


Diffusion of Plasma Across a Magnetic Field
journal, March 1961


On drift instabilities in magnetized target fusion devices
journal, September 2002


Convective Amplification of Magnetic Fields in Laser-Produced Plasmas by the Nernst Effect
journal, July 1984


Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments
journal, June 2012

  • Ryutov, D. D.; Cuneo, M. E.; Herrmann, M. C.
  • Physics of Plasmas, Vol. 19, Issue 6
  • DOI: 10.1063/1.4729726

Use of external magnetic fields in hohlraum plasmas to improve laser-coupling
journal, January 2015

  • Montgomery, D. S.; Albright, B. J.; Barnak, D. H.
  • Physics of Plasmas, Vol. 22, Issue 1
  • DOI: 10.1063/1.4906055

Parametric instabilities of electromagnetic waves in plasmas
journal, January 1974


Experiments and multiscale simulations of laser propagation through ignition-scale plasmas
journal, September 2007

  • Glenzer, S. H.; Froula, D. H.; Divol, L.
  • Nature Physics, Vol. 3, Issue 10
  • DOI: 10.1038/nphys709

Hydrodynamics simulations of 2ω laser propagation in underdense gasbag plasmas
journal, December 2004

  • Meezan, N. B.; Divol, L.; Marinak, M. M.
  • Physics of Plasmas, Vol. 11, Issue 12
  • DOI: 10.1063/1.1806476

High-Energy Petawatt Capability for the Omega Laser
journal, January 2005

  • Waxer, L. J.; Maywar, D. N.; Kelly, J. H.
  • Optics and Photonics News, Vol. 16, Issue 7
  • DOI: 10.1364/OPN.16.7.000030

Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility
journal, January 2015

  • Fiksel, G.; Agliata, A.; Barnak, D.
  • Review of Scientific Instruments, Vol. 86, Issue 1
  • DOI: 10.1063/1.4905625

Streaked x-ray spectrometer having a discrete selection of Bragg geometries for Omega
journal, October 2012

  • Millecchia, M.; Regan, S. P.; Bahr, R. E.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4729501

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Electrical conductivity for warm, dense aluminum plasmas and liquids
journal, August 2002


Practical Improvements to the Lee-More Conductivity Near the Metal-Insulator Transition
journal, March 2001


Comparison and analysis of collisional-radiative models at the NLTE-7 workshop
journal, December 2013


Hybrid atomic models for spectroscopic plasma diagnostics
journal, May 2007


The Nike KrF laser facility: Performance and initial target experiments
journal, May 1996

  • Obenschain, S. P.; Bodner, S. E.; Colombant, D.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.871661

The National Ignition Facility 2007 laser performance status
journal, May 2008


Works referencing / citing this record:

Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil
journal, March 2018

  • Barnak, D. H.; Davies, J. R.; Fiksel, G.
  • Review of Scientific Instruments, Vol. 89, Issue 3
  • DOI: 10.1063/1.5012531

Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion
journal, June 2018

  • Davies, J. R.; Bahr, R. E.; Barnak, D. H.
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5030107

Magnetised thermal self-focusing and filamentation of long-pulse lasers in plasmas relevant to magnetised ICF experiments
journal, September 2018

  • Watkins, H. C.; Kingham, R. J.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5049229

Enhancing performance of magnetized liner inertial fusion at the Z facility
journal, November 2018

  • Slutz, S. A.; Gomez, M. R.; Hansen, S. B.
  • Physics of Plasmas, Vol. 25, Issue 11
  • DOI: 10.1063/1.5054317

Origins and effects of mix on magnetized liner inertial fusion target performance
journal, January 2019

  • Knapp, P. F.; Gomez, M. R.; Hansen, S. B.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5064548