skip to main content


Title: Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel

Surveillance samples of a low copper (nominally 0.05 wt.% Cu) forging and a higher copper (0.23 wt.% Cu) submerged arc weld from the R. E. Ginna reactor pressure vessel have been characterized by atom probe tomography (APT) after exposure to three levels of neutron irradiation, i.e., fluences of 1.7, 3.6 and 5.8 × 10 23 n.m –2 (E > 1 MeV), and inlet temperatures of ~289 °C (~552 °F). As no copper-enriched precipitates were observed in the low copper forging, and the measured copper content in the ferrite matrix was 0.04± <0.01 at.% Cu, after neutron irradiation to a fluence of 1.7 × 10 23 n.m –3, this copper level was below the solubility limit. A number density of 2 × 10 22 m –3 of Ni–, Mn– Si-enriched precipitates with an equivalent radius of gyration of 1.7 ± 0.4 nm were detected in the sample. However, Cu-, Ni-, Mn-enriched precipitates were observed in specimens cut from different surveillance specimens from the same forging material in which the overall measured copper level was 0.08± <0.01 at.% (fluence of 3.6 × 10 23 n.m –3) and 0.09± <0.01 at.% Cu (fluence of 5.8 × 10 23 n.m –3). Therefore, these slightlymore » higher copper contents were above the solubility limit of Cu under these irradiation conditions. A best fit of all the composition data indicated that the size and number density of the Cu-enriched precipitates increased slightly in both size and number density by additional exposure to neutron irradiation. High number densities of Cu-enriched precipitates were observed in the higher Cu submerged arc weld for all irradiated conditions. The size and number density of the precipitates in the welds were higher than in the same fluence forgings. Some Cu-enriched precipitates were found to have Ni-, Mn- Si-, and P-enriched regions on their surfaces suggesting a preferential nucleation site. Furthermore, atom maps revealed P, Ni, and Mn segregation to, and preferential precipitation of, Cu-enriched precipitates over the surface of a grain boundary in the low fluence weld.« less
 [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Nuclear Materials
Additional Journal Information:
Journal Volume: 470; Journal ID: ISSN 0022-3115
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
36 MATERIALS SCIENCE; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; reactor pressure vessel steel; atom probe tomography; ductile–brittle transition temperature; charpy impact energy; segregation to dislocations; weld metal; heat-affected zone
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1396703