skip to main content


Title: Boulder damage symposium annual thin film laser damage competition

Optical instruments and laser systems are often fluence-limited by multilayer thin films deposited on the optical surfaces. When comparing publications within the laser damage literature, there can be confusing and conflicting laser damage results. This is due to differences in testing protocols between research groups studying very different applications. In this series of competitions, samples from multiple vendors are compared under identical testing parameters and a single testing service. Unlike a typical study where a hypothesis is tested within a well-controlled experiment with isolated variables, this competition isolates the laser damage testing variables so that trends can be observed between different deposition processes, coating materials, cleaning techniques, and multiple coating suppliers. The resulting series of damage competitions has also been designed to observe general trends of damage morphologies and mechanisms over a wide range of coating types (high reflector and antireflector), wavelengths (193 to 1064 nm), and pulse lengths (180 fs to 13 ns). A double blind test assured sample and submitter anonymity were used in each of the competitions so only a summary of the deposition process, coating materials, layer count and spectral results are presented. Laser resistance was strongly affected by substrate cleaning, coating deposition method, and coatingmore » material selection whereas layer count and spectral properties had minimal impact.« less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0091-3286
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Optical Engineering
Additional Journal Information:
Journal Volume: 51; Journal Issue: 12; Journal ID: ISSN 0091-3286
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
Country of Publication:
United States
42 ENGINEERING; laser induced damage; lasers; mirrors; optical coating; resistance; thin films; coating; deposition process
OSTI Identifier: