skip to main content


Title: On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situelectrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilized grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of E a = 21.6 kJ/mol and A o = 2.3 × 10 -17 m 2/s for Au-1 vol. % ZnO and E a =12.7 kJ/mol and A o = 3.1 × 10 -18 m 2/s for Au-2 vol.% ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivitymore » throughout the entire composition range for Au-ZnO thin films. As a result, the proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0021-8979; JAPIAU; 579736
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 117; Journal Issue: 14; Journal ID: ISSN 0021-8979
American Institute of Physics (AIP)
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
36 MATERIALS SCIENCE; electrical resistivity; metallic thin films; gold; zinc oxide films; hardness; thermal stability; nanocomposites; Au; ZnO; e-beam; grain size; Hall-Petch; electron scattering; Mayadas-Shatzkes; ODS; SEM; EBSD; TKD; TEM
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1228212