skip to main content


Title: Evolution and enabling capabilities of spatially resolved techniques for the characterization of heterogeneously catalyzed reactions

The development and optimization of catalysts and catalytic processes requires knowledge of reaction kinetics and mechanisms. In traditional catalyst kinetic characterization, the gas composition is known at the inlet, and the exit flow is measured to determine changes in concentration. As such, the progression of the chemistry within the catalyst is not known. Technological advances in electromagnetic and physical probes have made visualizing the evolution of the chemistry within catalyst samples a reality, as part of a methodology commonly known as spatial resolution. Herein, we discuss and evaluate the development of spatially resolved techniques, including the evolutions and achievements of this growing area of catalytic research. The impact of such techniques is discussed in terms of the invasiveness of physical probes on catalytic systems, as well as how experimentally obtained spatial profiles can be used in conjunction with kinetic modeling. Moreover, some aims and aspirations for further evolution of spatially resolved techniques are considered.
 [1] ;  [2] ;  [3] ;  [1] ;  [1] ;  [3] ;  [1] ;  [3] ;  [1] ;  [1] ;  [3]
  1. Queen's Univ. Belfast, Belfast (United Kingdom)
  2. King Abdulaziz Univ., Jeddah (Saudi Arabia)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725; Vehicle Technologies Office
Published Article
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 6; Journal Issue: 2; Journal ID: ISSN 2155-5435
American Chemical Society
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; spatial resolution; catalyst characterization; monoliths; packed beds; electromagnetic probes; physical probes
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1236596