skip to main content


Title: Controlling hollow relativistic electron beam orbits with an inductive current divider

A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I 1), while the outer conductor carries the remainder (I 2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I 2-I 1), while the average force on the envelope (the beam width) is proportional to the beam current I b = (I 2 + I 1). The values of I 1 and I 2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Naval Research Lab., Washington, D.C. (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1070-664X; PHPAEN; 558381
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 2; Journal ID: ISSN 1070-664X
American Institute of Physics (AIP)
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Science (NA-113)
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; electric fields; magnetic fields; electron beams; charged currents; current density
OSTI Identifier: