DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Near‐Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots

Abstract

Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. We find this process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours.

Authors:
 [1];  [2];  [2];  [2];  [3];  [3];  [4];  [2];  [2];  [5];  [5];  [5];  [2];  [1];  [2]
  1. FRS, School of Chemistry University of Manchester Manchester M13 9PL UK
  2. School of Physics and Astronomy and Photon Science Institute University of Manchester Manchester M13 9PL UK
  3. School of Materials University of Manchester Manchester M13 9PL UK
  4. Department of Chemistry Vanderbilt University Nashville TN, 37235 USA and Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge TN 37831–6071 USA
  5. IOM CNR, Laboratorio Nazionale TASC Area Science Park – Basovizza S.S. 14 Km. 163 5 I‐34149 Basovizza (TS) Italy
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Engineering and Physical Sciences Research Council (EPSRC); European Community’s Seventh Framework Programme
OSTI Identifier:
1237102
Alternate Identifier(s):
OSTI ID: 1237103; OSTI ID: 1263607
Grant/Contract Number:  
EP/K008544/1; 226716; HDTRA1-12-1-0013
Resource Type:
Published Article
Journal Name:
Small
Additional Journal Information:
Journal Name: Small Journal Volume: 11 Journal Issue: 13; Journal ID: ISSN 1613-6810
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
36 MATERIALS SCIENCE; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; nanocrystalline materials; colloidal quantum dots; photoluminescence; photoelectron spectroscopy; transmission electron microscopy; passivation

Citation Formats

Page, Robert C., Espinobarro‐Velazquez, Daniel, Leontiadou, Marina A., Smith, Charles, Lewis, Edward A., Haigh, Sarah J., Li, Chen, Radtke, Hanna, Pengpad, Atip, Bondino, Federica, Magnano, Elena, Pis, Igor, Flavell, Wendy. R., O'Brien, Paul, and Binks, David J. Near‐Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots. Germany: N. p., 2014. Web. doi:10.1002/smll.201402264.
Page, Robert C., Espinobarro‐Velazquez, Daniel, Leontiadou, Marina A., Smith, Charles, Lewis, Edward A., Haigh, Sarah J., Li, Chen, Radtke, Hanna, Pengpad, Atip, Bondino, Federica, Magnano, Elena, Pis, Igor, Flavell, Wendy. R., O'Brien, Paul, & Binks, David J. Near‐Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots. Germany. https://doi.org/10.1002/smll.201402264
Page, Robert C., Espinobarro‐Velazquez, Daniel, Leontiadou, Marina A., Smith, Charles, Lewis, Edward A., Haigh, Sarah J., Li, Chen, Radtke, Hanna, Pengpad, Atip, Bondino, Federica, Magnano, Elena, Pis, Igor, Flavell, Wendy. R., O'Brien, Paul, and Binks, David J. Mon . "Near‐Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots". Germany. https://doi.org/10.1002/smll.201402264.
@article{osti_1237102,
title = {Near‐Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots},
author = {Page, Robert C. and Espinobarro‐Velazquez, Daniel and Leontiadou, Marina A. and Smith, Charles and Lewis, Edward A. and Haigh, Sarah J. and Li, Chen and Radtke, Hanna and Pengpad, Atip and Bondino, Federica and Magnano, Elena and Pis, Igor and Flavell, Wendy. R. and O'Brien, Paul and Binks, David J.},
abstractNote = {Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. We find this process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours.},
doi = {10.1002/smll.201402264},
journal = {Small},
number = 13,
volume = 11,
place = {Germany},
year = {Mon Oct 27 00:00:00 EDT 2014},
month = {Mon Oct 27 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/smll.201402264

Citation Metrics:
Cited by: 75 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Soluble, Chloride-Terminated CdSe Nanocrystals: Ligand Exchange Monitored by 1 H and 31 P NMR Spectroscopy
journal, December 2012

  • Anderson, Nicholas C.; Owen, Jonathan S.
  • Chemistry of Materials, Vol. 25, Issue 1
  • DOI: 10.1021/cm303219a

Hybrid passivated colloidal quantum dot solids
journal, July 2012

  • Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd
  • Nature Nanotechnology, Vol. 7, Issue 9
  • DOI: 10.1038/nnano.2012.127

Colloidal-quantum-dot photovoltaics using atomic-ligand passivation
journal, September 2011

  • Tang, Jiang; Kemp, Kyle W.; Hoogland, Sjoerd
  • Nature Materials, Vol. 10, Issue 10
  • DOI: 10.1038/nmat3118

Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics
journal, March 2013

  • Kamat, Prashant V.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 6
  • DOI: 10.1021/jz400052e

Emergence of colloidal quantum-dot light-emitting technologies
journal, December 2012

  • Shirasaki, Yasuhiro; Supran, Geoffrey J.; Bawendi, Moungi G.
  • Nature Photonics, Vol. 7, Issue 1
  • DOI: 10.1038/nphoton.2012.328

Atomic Ligand Passivation of Colloidal Nanocrystal Films via their Reaction with Propyltrichlorosilane
journal, February 2013

  • Zanella, Marco; Maserati, Lorenzo; Pernia Leal, Manuel
  • Chemistry of Materials, Vol. 25, Issue 8
  • DOI: 10.1021/cm303022w

Colloidal PbS Quantum Dot Solar Cells with High Fill Factor
journal, June 2010

  • Zhao, Ni; Osedach, Tim P.; Chang, Liang-Yi
  • ACS Nano, Vol. 4, Issue 7
  • DOI: 10.1021/nn100129j

Near-Unity Quantum Yield in Semiconducting Nanostructures: Structural Understanding Leading to Energy Efficient Applications
journal, September 2013

  • Saha, Avijit; Chellappan, Kishore V.; Narayan, K. S.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz401958u

Comparison of Carrier Multiplication Yields in PbS and PbSe Nanocrystals: The Role of Competing Energy-Loss Processes
journal, January 2012

  • Stewart, John T.; Padilha, Lazaro A.; Qazilbash, M. Mumtaz
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203367m

Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions
journal, January 2012

  • Greytak, Andrew B.; Allen, Peter M.; Liu, Wenhao
  • Chemical Science, Vol. 3, Issue 6
  • DOI: 10.1039/c2sc00561a

Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales
journal, March 2008

  • Sher, P. H.; Smith, J. M.; Dalgarno, P. A.
  • Applied Physics Letters, Vol. 92, Issue 10
  • DOI: 10.1063/1.2894193

Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells
journal, July 2012


Pyrromethene-BF2 complexes as laser dyes: 2
journal, February 1993

  • Boyer, Joseph H.; Haag, Anthony M.; Sathyamoorthi, Govindarao
  • Heteroatom Chemistry, Vol. 4, Issue 1
  • DOI: 10.1002/hc.520040107

Electrochemical properties of CdSe and CdTe quantum dots
journal, January 2012

  • Amelia, Matteo; Lincheneau, Christophe; Silvi, Serena
  • Chemical Society Reviews, Vol. 41, Issue 17
  • DOI: 10.1039/c2cs35117j

Characterization of p-type cadmium telluride electrodes in acetonitrile/electrolyte solutions. Nearly ideal behavior from reductive surface pretreatments
journal, December 1983

  • White, Henry S.; Ricco, Antonio J.; Wrighton, Mark S.
  • The Journal of Physical Chemistry, Vol. 87, Issue 25
  • DOI: 10.1021/j150643a018

Role of Bond Adaptability in the Passivation of Colloidal Quantum Dot Solids
journal, August 2013

  • Thon, Susanna M.; Ip, Alexander H.; Voznyy, Oleksandr
  • ACS Nano, Vol. 7, Issue 9
  • DOI: 10.1021/nn4021983

Reaction Chemistry and Ligand Exchange at Cadmium−Selenide Nanocrystal Surfaces
journal, September 2008

  • Owen, Jonathan S.; Park, Jungwon; Trudeau, Paul-Emile
  • Journal of the American Chemical Society, Vol. 130, Issue 37
  • DOI: 10.1021/ja804414f

Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600−1000 nm
journal, February 2011

  • Rurack, Knut; Spieles, Monika
  • Analytical Chemistry, Vol. 83, Issue 4
  • DOI: 10.1021/ac101329h

Colloidal quantum dot solar cells
journal, February 2012


Preparation of Highly Luminescent CdTe/CdS Core/Shell Quantum Dots
journal, March 2009


Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine
journal, November 2012

  • Bae, Wan Ki; Joo, Jin; Padilha, Lazaro A.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309783v

Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids
journal, May 2013

  • Zhitomirsky, David; Voznyy, Oleksandr; Hoogland, Sjoerd
  • ACS Nano, Vol. 7, Issue 6
  • DOI: 10.1021/nn402197a

The Complete In-Gap Electronic Structure of Colloidal Quantum Dot Solids and Its Correlation with Electronic Transport and Photovoltaic Performance
journal, November 2013

  • Katsiev, Khabiboulakh; Ip, Alexander H.; Fischer, Armin
  • Advanced Materials, Vol. 26, Issue 6
  • DOI: 10.1002/adma.201304166

Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells
journal, December 2013

  • Zhang, Jianbing; Gao, Jianbo; Miller, Elisa M.
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405236k

A greener route to photoelectrochemically active PbS nanoparticles
journal, January 2010

  • Akhtar, Javeed; Azad Malik, M.; O'Brien, Paul
  • Journal of Materials Chemistry, Vol. 20, Issue 12
  • DOI: 10.1039/b924436k

Correlation of calculated and measured 2p spin-orbit splitting by electron spectroscopy using monochromatic x-radiation
journal, January 1974

  • Barrie, A.; Drummond, I. W.; Herd, Q. C.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 5, Issue 1
  • DOI: 10.1016/0368-2048(74)85013-9