skip to main content


Title: TEM in situ lithiation of tin nanoneedles for battery applications

Materials such as tin (Sn) and silicon that alloy with lithium (Li) have attracted renewed interest as anode materials in Li-ion batteries. Although their superior capacity to graphite and other intercalation materials has been known for decades, their mechanical instability due to extreme volume changes during cycling has traditionally limited their commercial viability. This limitation is changing as processes emerge that produce nanostructured electrodes. The nanostructures can accommodate the repeated expansion and contraction as Li is inserted and removed without failing mechanically. Recently, one such nano-manufacturing process, which is capable of depositing coatings of Sn “nanoneedles” at low temperature with no template and at industrial scales, has been described. The present work is concerned with observations of the lithiation and delithiation behavior of these Sn nanoneedles during in situ experiments in the transmission electron microscope, along with a brief review of how in situ TEM experiments have been used to study the lithiation of Li-alloying materials. Individual needles are successfully lithiated and delithiated in solid-state half-cells against a Li-metal counter-electrode. Furthermore the microstructural evolution of the needles is discussed, including the transformation of one needle from single-crystal Sn to polycrystalline Sn–Li and back to single-crystal Sn.
 [1] ;  [2] ;  [3] ;  [3] ;  [4] ;  [2]
  1. Univ. of Connecticut, Storrs, CT (United States)
  2. Washington State Univ., Pullman, WA (United States)
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  4. Univ. of Connecticut, Storrs, CT (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0022-2461; PII: 9318
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Materials Science
Additional Journal Information:
Journal Volume: 51; Journal Issue: 1; Journal ID: ISSN 0022-2461
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
77 NANOSCIENCE AND NANOTECHNOLOGY; 25 ENERGY STORAGE; batteries; in-situ TEM; nanoneedles; tin; lithiation
OSTI Identifier: