DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

Abstract

Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediate ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueousmore » redox flow batteries.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Electricity (OE)
OSTI Identifier:
1236481
Report Number(s):
SAND-2015-6824J
Journal ID: ISSN 0013-4651; 598915
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 163; Journal Issue: 1; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; membranes; non-aqueous; redox flow batteries

Citation Formats

Small, Leo J., Pratt, III, Harry D., Fujimoto, Cy H., and Anderson, Travis M. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries. United States: N. p., 2015. Web. doi:10.1149/2.0141601jes.
Small, Leo J., Pratt, III, Harry D., Fujimoto, Cy H., & Anderson, Travis M. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries. United States. https://doi.org/10.1149/2.0141601jes
Small, Leo J., Pratt, III, Harry D., Fujimoto, Cy H., and Anderson, Travis M. Fri . "Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries". United States. https://doi.org/10.1149/2.0141601jes. https://www.osti.gov/servlets/purl/1236481.
@article{osti_1236481,
title = {Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries},
author = {Small, Leo J. and Pratt, III, Harry D. and Fujimoto, Cy H. and Anderson, Travis M.},
abstractNote = {Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediate ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.},
doi = {10.1149/2.0141601jes},
journal = {Journal of the Electrochemical Society},
number = 1,
volume = 163,
place = {United States},
year = {Fri Oct 23 00:00:00 EDT 2015},
month = {Fri Oct 23 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

Semi-Solid Lithium Rechargeable Flow Battery
journal, May 2011

  • Duduta, Mihai; Ho, Bryan; Wood, Vanessa C.
  • Advanced Energy Materials, Vol. 1, Issue 4, p. 511-516
  • DOI: 10.1002/aenm.201100152

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

Progress in redox flow batteries, remaining challenges and their applications in energy storage
journal, January 2012

  • Leung, Puiki; Li, Xiaohong; Ponce de León, Carlos
  • RSC Advances, Vol. 2, Issue 27
  • DOI: 10.1039/c2ra21342g

Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids
journal, December 2008

  • O’Mahony, Aoife M.; Silvester, Debbie S.; Aldous, Leigh
  • Journal of Chemical & Engineering Data, Vol. 53, Issue 12
  • DOI: 10.1021/je800678e

Synthesis and characterization of ionic liquids containing copper, manganese, or zinc coordination cations
journal, January 2011

  • Pratt III, Harry D.; Rose, Alyssa J.; Staiger, Chad L.
  • Dalton Transactions, Vol. 40, Issue 43
  • DOI: 10.1039/c1dt10973a

Copper ionic liquids: Tunable ligand and anion chemistries to control electrochemistry and deposition morphology
journal, September 2013


Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes
journal, September 2013

  • Cappillino, Patrick J.; Pratt, Harry D.; Hudak, Nicholas S.
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300566

Redox Ionic Liquid Phases:  Ferrocenated Imidazoliums
journal, August 2006

  • Balasubramanian, Ramjee; Wang, Wei; Murray, Royce W.
  • Journal of the American Chemical Society, Vol. 128, Issue 31
  • DOI: 10.1021/ja0625327

A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective
journal, January 2013

  • Shin, Sung-Hee; Yun, Sung-Hyun; Moon, Seung-Hyeon
  • RSC Advances, Vol. 3, Issue 24, p. 9095-9116
  • DOI: 10.1039/c3ra00115f

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties
journal, March 2001


Design and characterisation of Nafion membranes with incorporated ionic liquids cations
journal, February 2010

  • Neves, Luísa A.; Benavente, Juana; Coelhoso, Isabel M.
  • Journal of Membrane Science, Vol. 347, Issue 1-2
  • DOI: 10.1016/j.memsci.2009.10.004

Stability of composite anion exchange membranes with various functional groups and their performance for energy conversion
journal, September 2013


Pore-filled anion-exchange membranes for non-aqueous redox flow batteries with dual-metal-complex redox shuttles
journal, March 2014


Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery
journal, January 2012

  • Wang, Wei; Xu, Wu; Cosimbescu, Lelia
  • Chemical Communications, Vol. 48, Issue 53, p. 6669-6671
  • DOI: 10.1039/c2cc32466k

Non-Aqueous Li-Based Redox Flow Batteries
journal, January 2012

  • Hamelet, S.; Tzedakis, T.; Leriche, J. -B.
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.071208jes

Performance of a Non-Aqueous Vanadium Acetylacetonate Prototype Redox Flow Battery: Examination of Separators and Capacity Decay
journal, December 2014

  • Escalante-García, Ismailia L.; Wainright, Jesse S.; Thompson, Levi T.
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0471503jes

Ion Conducting Membranes for Fuel Cells and other Electrochemical Devices
journal, September 2013

  • Kreuer, Klaus-Dieter
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm402742u

A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications
journal, June 2013

  • Kreuer, Klaus-Dieter; Portale, Giuseppe
  • Advanced Functional Materials, Vol. 23, Issue 43
  • DOI: 10.1002/adfm.201300376

Direct Measurement of Polysulfide Shuttle Current: A Window into Understanding the Performance of Lithium-Sulfur Cells
journal, November 2014

  • Moy, Derek; Manivannan, A.; Narayanan, S. R.
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.0181501jes

Synthesis and Characterization of Poly(phenylene)-Based Anion Exchange Membranes for Alkaline Fuel Cells
journal, November 2009

  • Hibbs, Michael R.; Fujimoto, Cy H.; Cornelius, Christopher J.
  • Macromolecules, Vol. 42, Issue 21, p. 8316-8321
  • DOI: 10.1021/ma901538c

Alkaline stability of poly(phenylene)-based anion exchange membranes with various cations
journal, August 2012

  • Hibbs, Michael R.; Hickner, Michael A.; Coughlin, E. Bryan
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 51, Issue 24, p. 1736-1742
  • DOI: 10.1002/polb.23149

Works referencing / citing this record:

MetILs 3 : A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids
journal, July 2017

  • Small, Leo J.; Pratt, Harry D.; Staiger, Chad L.
  • Advanced Sustainable Systems, Vol. 1, Issue 9
  • DOI: 10.1002/adsu.201700066

Redox Flow Batteries for Energy Storage: A Technology Review
journal, September 2017

  • Ye, Ruijie; Henkensmeier, Dirk; Yoon, Sang Jun
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 15, Issue 1
  • DOI: 10.1115/1.4037248

Critical Review—Experimental Diagnostics and Material Characterization Techniques Used on Redox Flow Batteries
journal, January 2018

  • Gandomi, Y. Ashraf; Aaron, D. S.; Houser, J. R.
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0601805jes

Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries
journal, January 2019

  • Small, Leo J.; Pratt, Harry D.; Anderson, Travis M.
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.0681912jes

Effect of Membrane Properties on Ion Crossover in Vanadium Redox Flow Batteries
journal, January 2019

  • Wang, Yuanhui; Hao, Liang
  • Journal of The Electrochemical Society, Vol. 166, Issue 15
  • DOI: 10.1149/2.1011915jes