skip to main content


Title: Dynamic characterization of frequency response of shock mitigation of a polymethylene diisocyanate (PMDI) based rigid polyurethane foam

Kolsky compression bar experiments were conducted to characterize the shock mitigation response of a polymethylene diisocyanate (PMDI) based rigid polyurethane foam, abbreviated as PMDI foam in this study. The Kolsky bar experimental data was analyzed in the frequency domain with respect to impact energy dissipation and acceleration attenuation to perform a shock mitigation assessment on the foam material. The PMDI foam material exhibits excellent performance in both energy dissipation and acceleration attenuation, particularly for the impact frequency content over 1.5 kHz. This frequency (1.5 kHz) was observed to be independent of specimen thickness and impact speed, which may represent the characteristic shock mitigation frequency of the PMDI foam material under investigation. The shock mitigation characteristics of the PMDI foam material were insignificantly influenced by the specimen thickness. As a result, impact speed did have some effect.
 [1] ;  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1679-7817; PII: S1679-78252015000901790
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Latin American Journal of Solids and Structures
Additional Journal Information:
Journal Volume: 12; Journal Issue: 9; Journal ID: ISSN 1679-7817
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
36 MATERIALS SCIENCE; Kolsky bar; foam material; shock mitigation; frequency response; energy dissipation; acceleration
OSTI Identifier: