skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Through-plane conductivities of membranes for nonaqueous redox flow batteries

Abstract

In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductance values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.

Authors:
 [1];  [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Electricity Delivery and Energy Reliability (OE)
OSTI Identifier:
1235356
Report Number(s):
SAND-2015-4046J
Journal ID: ISSN 0013-4651; 584015
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 162; Journal Issue: 10; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; ionic liquids; membranes; non-aqueous; redox flow battery

Citation Formats

Anderson, Travis Mark, Small, Leo J., Pratt, III, Harry D., and Hudak, Nicholas S. Through-plane conductivities of membranes for nonaqueous redox flow batteries. United States: N. p., 2015. Web. doi:10.1149/2.0901510jes.
Anderson, Travis Mark, Small, Leo J., Pratt, III, Harry D., & Hudak, Nicholas S. Through-plane conductivities of membranes for nonaqueous redox flow batteries. United States. doi:10.1149/2.0901510jes.
Anderson, Travis Mark, Small, Leo J., Pratt, III, Harry D., and Hudak, Nicholas S. Thu . "Through-plane conductivities of membranes for nonaqueous redox flow batteries". United States. doi:10.1149/2.0901510jes. https://www.osti.gov/servlets/purl/1235356.
@article{osti_1235356,
title = {Through-plane conductivities of membranes for nonaqueous redox flow batteries},
author = {Anderson, Travis Mark and Small, Leo J. and Pratt, III, Harry D. and Hudak, Nicholas S.},
abstractNote = {In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductance values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.},
doi = {10.1149/2.0901510jes},
journal = {Journal of the Electrochemical Society},
number = 10,
volume = 162,
place = {United States},
year = {2015},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrochemical energy storage in a sustainable modern society
journal, January 2014


Addressing the Intermittency Challenge: Massive Energy Storage in a Sustainable Future [Scanning the Issue]
journal, February 2012


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Redox flow cells for energy conversion
journal, September 2006

  • Ponce de Leon, C.; Frias-Ferrer, A.; Gonzalez-Garcia, J.
  • Journal of Power Sources, Vol. 160, Issue 1, p. 716-732
  • DOI: 10.1016/j.jpowsour.2006.02.095

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

Synthesis and characterization of ionic liquids containing copper, manganese, or zinc coordination cations
journal, January 2011

  • Pratt III, Harry D.; Rose, Alyssa J.; Staiger, Chad L.
  • Dalton Transactions, Vol. 40, Issue 43
  • DOI: 10.1039/c1dt10973a

Crystal structures of low-melting ionic transition-metal complexes with N-alkylimidazole ligands
journal, January 2012

  • Vander Hoogerstraete, Tom; Brooks, Neil R.; Norberg, Bernadette
  • CrystEngComm, Vol. 14, Issue 15
  • DOI: 10.1039/c2ce25470k

Semi-Solid Lithium Rechargeable Flow Battery
journal, May 2011

  • Duduta, Mihai; Ho, Bryan; Wood, Vanessa C.
  • Advanced Energy Materials, Vol. 1, Issue 4, p. 511-516
  • DOI: 10.1002/aenm.201100152

Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte
journal, November 1988

  • Matsuda, Y.; Tanaka, K.; Okada, M.
  • Journal of Applied Electrochemistry, Vol. 18, Issue 6, p. 909-914
  • DOI: 10.1007/BF01016050

High-Energy Redox-Flow Batteries with Hybrid Metal Foam Electrodes
journal, June 2014

  • Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 13
  • DOI: 10.1021/am5025935

Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2ʹ-bipyridine) Complex Electrolyte
journal, January 2012

  • Mun, Junyoung; Lee, Myung-Jin; Park, Joung-Won
  • Electrochemical and Solid-State Letters, Vol. 15, Issue 6
  • DOI: 10.1149/2.033206esl

Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries
journal, December 2009

  • Liu, Qinghua; Sleightholme, Alice E. S.; Shinkle, Aaron A.
  • Electrochemistry Communications, Vol. 11, Issue 12, p. 2312-2315
  • DOI: 10.1016/j.elecom.2009.10.006

Performance of a Non-Aqueous Vanadium Acetylacetonate Prototype Redox Flow Battery: Examination of Separators and Capacity Decay
journal, December 2014

  • Escalante-García, Ismailia L.; Wainright, Jesse S.; Thompson, Levi T.
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0471503jes

Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries
journal, January 2015

  • Suttil, J. A.; Kucharyson, J. F.; Escalante-Garcia, I. L.
  • Journal of Materials Chemistry A, Vol. 3, Issue 15
  • DOI: 10.1039/C4TA06622G

Ferrocene and Cobaltocene Derivatives for Non-Aqueous Redox Flow Batteries
journal, November 2014


Electrolyte Development for Non-Aqueous Redox Flow Batteries Using a High-Throughput Screening Platform
journal, January 2014

  • Su, Liang; Ferrandon, Magali; Kowalski, Jeffrey A.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0811412jes

Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes
journal, September 2013

  • Cappillino, Patrick J.; Pratt, Harry D.; Hudak, Nicholas S.
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300566

A tetradentate Ni(II) complex cation as a single redox couple for non-aqueous flow batteries
journal, June 2015


A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective
journal, January 2013

  • Shin, Sung-Hee; Yun, Sung-Hyun; Moon, Seung-Hyeon
  • RSC Advances, Vol. 3, Issue 24, p. 9095-9116
  • DOI: 10.1039/c3ra00115f

Pore-filled anion-exchange membranes for non-aqueous redox flow batteries with dual-metal-complex redox shuttles
journal, March 2014


Non-Aqueous Li-Based Redox Flow Batteries
journal, January 2012

  • Hamelet, S.; Tzedakis, T.; Leriche, J. -B.
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.071208jes

Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties
journal, March 2001


Design and characterisation of Nafion membranes with incorporated ionic liquids cations
journal, February 2010

  • Neves, Luísa A.; Benavente, Juana; Coelhoso, Isabel M.
  • Journal of Membrane Science, Vol. 347, Issue 1-2
  • DOI: 10.1016/j.memsci.2009.10.004

Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle x-ray scattering
journal, June 1994


Detailed Spectroscopic, Thermodynamic, and Kinetic Characterization of Nickel(II) Complexes with 2,2‘-Bipyridine and 1,10-Phenanthroline Attained via Equilibrium-Restricted Factor Analysis
journal, January 2008

  • Vander Griend, Douglas A.; Bediako, Daniel Kwabena; DeVries, Michael J.
  • Inorganic Chemistry, Vol. 47, Issue 2
  • DOI: 10.1021/ic700553d

Room temperature ionic liquid electrolytes for redox flow batteries
journal, May 2015


A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries
journal, March 2015

  • Takechi, Kensuke; Kato, Yuichi; Hase, Yoko
  • Advanced Materials, Vol. 27, Issue 15
  • DOI: 10.1002/adma.201405840

Ionic liquids as electrolytes
journal, August 2006