skip to main content


Title: Application of Bayes' theorem for pulse shape discrimination

A Bayesian approach is proposed for pulse shape discrimination of photons and neutrons in liquid organic scinitillators. Instead of drawing a decision boundary, each pulse is assigned a photon or neutron confidence probability. In addition, this allows for photon and neutron classification on an event-by-event basis. The sum of those confidence probabilities is used to estimate the number of photon and neutron instances in the data. An iterative scheme, similar to an expectation-maximization algorithm for Gaussian mixtures, is used to infer the ratio of photons-to-neutrons in each measurement. Therefore, the probability space adapts to data with varying photon-to-neutron ratios. A time-correlated measurement of Am–Be and separate measurements of 137Cs, 60Co and 232Th photon sources were used to construct libraries of neutrons and photons. These libraries were then used to produce synthetic data sets with varying ratios of photons-to-neutrons. Probability weighted method that we implemented was found to maintain neutron acceptance rate of up to 90% up to photon-to-neutron ratio of 2000, and performed 9% better than the decision boundary approach. Furthermore, the iterative approach appropriately changed the probability space with an increasing number of photons which kept the neutron population estimate from unrealistically increasing.
 [1] ;  [2] ;  [2] ;  [2]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0168-9002; 567086
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 795; Journal Issue: C; Journal ID: ISSN 0168-9002
Research Org:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation (NA-20)
Country of Publication:
United States
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; pulse shape discrimination; liquid scintillator; Bayes׳ theorem; expectation-maximization
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1422673