skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide

Abstract

The As antisite in GaAs (AsGa) has been the subject of numerous experimental and theoretical studies. Recent density-functional-theory (DFT) studies report results in good agreement with experimental data for the +2, +1, and 0 charge states of the stable EL2 structure, the 0 charge state of the metastable EL2* structure, and the activation energy to transform from EL2* to EL2 in the 0 charge state. However, these studies did not report results for EL2* in the -1 charge state. In this paper, we report new DFT results for the +2, +1, 0, and -1 charge states of AsGa, obtained using a semilocal exchange-correlation functional and interpreted using a bounds-analysis approach. In good agreement with experimental data, we find a -1/0 EL2* level 0.06 eV below the conduction-band edge and an activation energy of 0.05 eV to transform from EL2* to EL2 in the -1 charge state. While the Ga antisite in GaAs (GaAs) has not been studied as extensively as AsGa, experimental studies report three charge states (-2, -1, 0) and two levels (-2/-1, -1/0) close to the valence-band edge. Recent DFT studies report the same charge states, but the levels are found to be well-separated from the valence-band edge.more » To resolve this disagreement, we performed new DFT calculations for GaAs and interpreted them using a bounds analysis. The analysis identified the -1 and 0 charge states as hole states weakly bound to a highly-localized -2 charge state. Moreover, the -2/-1, -1/0 levels were found to be near the valence-band edge, in good agreement with the experimental data.« less

Authors:
 [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1235253
Alternate Identifier(s):
OSTI ID: 1181454
Report Number(s):
SAND-2014-17327J
Journal ID: ISSN 1098-0121; PRBMDO; 537237
Grant/Contract Number:  
AC04-94AL85000; AC04–94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: 1; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Wright, A. F., and Modine, N. A. Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide. United States: N. p., 2015. Web. doi:10.1103/PhysRevB.91.014110.
Wright, A. F., & Modine, N. A. Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide. United States. doi:10.1103/PhysRevB.91.014110.
Wright, A. F., and Modine, N. A. Fri . "Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide". United States. doi:10.1103/PhysRevB.91.014110. https://www.osti.gov/servlets/purl/1235253.
@article{osti_1235253,
title = {Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide},
author = {Wright, A. F. and Modine, N. A.},
abstractNote = {The As antisite in GaAs (AsGa) has been the subject of numerous experimental and theoretical studies. Recent density-functional-theory (DFT) studies report results in good agreement with experimental data for the +2, +1, and 0 charge states of the stable EL2 structure, the 0 charge state of the metastable EL2* structure, and the activation energy to transform from EL2* to EL2 in the 0 charge state. However, these studies did not report results for EL2* in the -1 charge state. In this paper, we report new DFT results for the +2, +1, 0, and -1 charge states of AsGa, obtained using a semilocal exchange-correlation functional and interpreted using a bounds-analysis approach. In good agreement with experimental data, we find a -1/0 EL2* level 0.06 eV below the conduction-band edge and an activation energy of 0.05 eV to transform from EL2* to EL2 in the -1 charge state. While the Ga antisite in GaAs (GaAs) has not been studied as extensively as AsGa, experimental studies report three charge states (-2, -1, 0) and two levels (-2/-1, -1/0) close to the valence-band edge. Recent DFT studies report the same charge states, but the levels are found to be well-separated from the valence-band edge. To resolve this disagreement, we performed new DFT calculations for GaAs and interpreted them using a bounds analysis. The analysis identified the -1 and 0 charge states as hole states weakly bound to a highly-localized -2 charge state. Moreover, the -2/-1, -1/0 levels were found to be near the valence-band edge, in good agreement with the experimental data.},
doi = {10.1103/PhysRevB.91.014110},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
number = 1,
volume = 91,
place = {United States},
year = {2015},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share: