skip to main content


Title: Electromagnetic structure of few-nucleon ground states

Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled ChiEFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). Furthermore, for momentum transfers below Q < 5 fm -1 there is satisfactory agreement between experimental data and theoretical results in all three approaches. Conversely, at Q > 5 fm -1, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. The experimental data on the deuteron A structure function extend to Q ~ 12 fm -1, and the close agreement between these data and the CST results suggests that, even in this extreme kinematical regime, there is no evidence for new effects coming from quark and gluon degrees of freedom at short distances.
 [1] ;  [2] ;  [3] ;  [4] ;  [4] ;  [5] ;  [6] ;  [4] ;  [7]
  1. Univ. of Pisa (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Pisa (Italy)
  2. College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
  3. Univ. of Lisbon (Portugal)
  4. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)
  5. Univ. of Basel (Switzerland)
  6. Univ. of Evora (Portugal); Univ. of Lisbon (Portugal)
  7. Univ. of Pisa (Italy); INFN; Istituto Nazionale di Fisica Nucleare (INFN), Pisa (Italy)
Publication Date:
Report Number(s):
JLAB-THY-15-2030; DOE/OR/23177-3335; arXiv:1504.05063
Journal ID: ISSN 0954-3899
Grant/Contract Number:
AC05-06OR23177; HadronPhysics3 Grant No. 283286; PTDC/FIS/113940/2009
Accepted Manuscript
Journal Name:
Journal of Physics. G, Nuclear and Particle Physics
Additional Journal Information:
Journal Volume: 43; Journal Issue: 2; Journal ID: ISSN 0954-3899
IOP Publishing
Research Org:
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
Country of Publication:
United States
OSTI Identifier: