skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

Abstract

Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4 ) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2more » H 4 have high profitability indices.« less

Authors:
ORCiD logo [1];  [2];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical & Biomolecular Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1235182
Alternate Identifier(s):
OSTI ID: 1415946
Grant/Contract Number:  
AC02-05CH11231; SC0004993
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 112; Journal Issue: 45; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; artificial photosynthesis; electrochemical CO2 reduction; solar-to-fuel efficiency; photoelectrochemical cells; photovoltaic-electrolyzer

Citation Formats

Singh, Meenesh R., Clark, Ezra L., and Bell, Alexis T. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels. United States: N. p., 2015. Web. doi:10.1073/pnas.1519212112.
Singh, Meenesh R., Clark, Ezra L., & Bell, Alexis T. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels. United States. doi:10.1073/pnas.1519212112.
Singh, Meenesh R., Clark, Ezra L., and Bell, Alexis T. Mon . "Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels". United States. doi:10.1073/pnas.1519212112.
@article{osti_1235182,
title = {Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels},
author = {Singh, Meenesh R. and Clark, Ezra L. and Bell, Alexis T.},
abstractNote = {Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4 ) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2 H 4 have high profitability indices.},
doi = {10.1073/pnas.1519212112},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 45,
volume = 112,
place = {United States},
year = {2015},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1073/pnas.1519212112

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves
journal, June 2012

  • Surendranath, Y.; Bediako, D. K.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1118341109

A monolithic device for CO 2 photoreduction to generate liquid organic substances in a single-compartment reactor
journal, January 2015

  • Arai, Takeo; Sato, Shunsuke; Morikawa, Takeshi
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE01314C

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Oligomerization of ethene over nickel-exchanged zeolite y into a diesel-range product
journal, September 1988


Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere
journal, January 2012

  • Goeppert, Alain; Czaun, Miklos; Surya Prakash, G. K.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21586a

Design of Membrane-Encapsulated Wireless Photoelectrochemical Cells for Hydrogen Production
journal, January 2014

  • Singh, Meenesh R.; Stevens, John C.; Weber, Adam Z.
  • Journal of The Electrochemical Society, Vol. 161, Issue 8
  • DOI: 10.1149/2.033408jes

Electrochemical CO2 Reduction on Metal Electrodes
book, January 2008


Variable Composition Hydrogen/Natural Gas Mixtures for Increased Engine Efficiency and Decreased Emissions
journal, July 1999

  • Sierens, R.; Rosseel, E.
  • Journal of Engineering for Gas Turbines and Power, Vol. 122, Issue 1
  • DOI: 10.1115/1.483191

A study of the basic DC-DC converters applied in maximum power point tracking
conference, September 2009

  • Coelho, Roberto F.; Concer, Filipe; Martins, Denizar C.
  • 2009 Brazilian Power Electronics Conference (COBEP)
  • DOI: 10.1109/COBEP.2009.5347723

Tandem photo-electrode of InGaN with two Si p-n junctions for CO 2 conversion to HCOOH with the efficiency greater than biological photosynthesis
journal, February 2015

  • Sekimoto, Takeyuki; Shinagawa, Shuichi; Uetake, Yusuke
  • Applied Physics Letters, Vol. 106, Issue 7
  • DOI: 10.1063/1.4910510

Photosynthetic energy conversion: natural and artificial
journal, January 2009


Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation
journal, January 2015

  • Coridan, Robert H.; Nielander, Adam C.; Francis, Sonja A.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE00777A

Ten-percent solar-to-fuel conversion with nonprecious materials
journal, September 2014

  • Cox, Casandra R.; Lee, Jungwoo Z.; Nocera, Daniel G.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 39
  • DOI: 10.1073/pnas.1414290111

Insights into the electrocatalytic reduction of CO 2 on metallic silver surfaces
journal, January 2014

  • Hatsukade, Toru; Kuhl, Kendra P.; Cave, Etosha R.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
  • DOI: 10.1039/C4CP00692E

Development and characterization of high-efficiency Ga/sub 0.5/In/sub 0.5/P/GaAs/Ge dual- and triple-junction solar cells
journal, January 1999

  • Karam, N. H.; King, R. R.; Cavicchi, B. T.
  • IEEE Transactions on Electron Devices, Vol. 46, Issue 10
  • DOI: 10.1109/16.792006

Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells
journal, August 1980

  • Henry, C. H.
  • Journal of Applied Physics, Vol. 51, Issue 8
  • DOI: 10.1063/1.328272

Photons to formate: Efficient electrochemical solar energy conversion via reduction of carbon dioxide
journal, September 2014


Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics
journal, June 2015

  • Schreier, Marcel; Curvat, Laura; Giordano, Fabrizio
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8326

Energy and Material Balance of CO 2 Capture from Ambient Air
journal, November 2007

  • Zeman, Frank
  • Environmental Science & Technology, Vol. 41, Issue 21
  • DOI: 10.1021/es070874m

Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide
journal, January 2015

  • Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 29
  • DOI: 10.1039/C5CP03283K

Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
journal, January 2015

  • Ager, Joel W.; Shaner, Matthew R.; Walczak, Karl A.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE00457H

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
journal, January 2012

  • Haussener, Sophia; Xiang, Chengxiang; Spurgeon, Joshua M.
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee23187e

Solar hydrogen production by water splitting with a conversion efficiency of 18%
journal, October 2007


Limiting and realizable efficiencies of solar photolysis of water
journal, August 1985

  • Bolton, James R.; Strickler, Stewart J.; Connolly, John S.
  • Nature, Vol. 316, Issue 6028, p. 495-500
  • DOI: 10.1038/316495a0

New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
journal, January 2012

  • Kuhl, Kendra P.; Cave, Etosha R.; Abram, David N.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21234j

Recent advances in direct formic acid fuel cells (DFAFC)
journal, July 2008


High-Efficiency Photoelectrochemical Hydrogen Production Using Multijunction Amorphous Silicon Photoelectrodes
journal, January 1998

  • Rocheleau, Richard E.; Miller, Eric L.; Misra, Anupam
  • Energy & Fuels, Vol. 12, Issue 1
  • DOI: 10.1021/ef9701347

High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production
journal, February 2001


Crucial role of sustainable liquid junction potential for solar-to-carbon monoxide conversion by a photovoltaic photoelectrochemical system
journal, January 2015

  • Sugano, Yoshitsune; Ono, Akihiko; Kitagawa, Ryota
  • RSC Advances, Vol. 5, Issue 67
  • DOI: 10.1039/C5RA07179H

Sustainable hydrocarbon fuels by recycling CO 2 and H 2 O with renewable or nuclear energy
journal, January 2011

  • Graves, Christopher; Ebbesen, Sune D.; Mogensen, Mogens
  • Renewable and Sustainable Energy Reviews, Vol. 15, Issue 1
  • DOI: 10.1016/j.rser.2010.07.014

Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits
journal, March 2013

  • Winkler, M. T.; Cox, C. R.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 12
  • DOI: 10.1073/pnas.1301532110