skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework

Abstract

The organization of trisradical rotaxanes within the channels of a Zr 6-based metal–organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust ZrIV–carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet–visible–near-infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR), and 1H nuclear magnetic resonance (NMR) spectroscopies all confirm the capture of redox-active rotaxanes within the mesoscale hexagonal channels of NU-1000. Cyclic voltammetry measurements performed on electroactive thin films of the resulting material indicate that redox-active viologen subunits located on the rotaxane components can be accessed electrochemically in the solid state. In contradistinction to previous methods, this strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal–organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines. In conclusion, the results presented here provide proof-of-concept for the application of postsynthetic transformations in the integration of dynamic molecular machines with robust porous frameworks.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [3];  [1]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Intel Labs, Santa Clara, CA (United States); King Abdulaziz City for Science and Technology., Riyadh (Saudi Arabia)
  3. Northwestern Univ., Evanston, IL (United States); King Abdulaziz Univ., Jeddah (Saudi Arabia)
Publication Date:
Research Org.:
Oak Ridge Associated Universities, Inc., Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1235145
Alternate Identifier(s):
OSTI ID: 1348348
Grant/Contract Number:  
AC05-06OR23100; FG87ER13808; W911NF-12-1-0130; FA9550-11-C-0028; DGE-0824162; CHE-1266201
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 112; Journal Issue: 36; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; mechanically interlocked molecules; metal–organic framework; molecular switches; rotaxanes radicals

Citation Formats

McGonigal, Paul R., Deria, Pravas, Hod, Idan, Moghadam, Peyman Z., Avestro, Alyssa-Jennifer, Horwitz, Noah E., Gibbs-Hall, Ian C., Blackburn, Anthea K., Chen, Dongyang, Botros, Youssry Y., Wasielewski, Michael R., Snurr, Randall Q., Hupp, Joseph T., Farha, Omar K., and Stoddart, J. Fraser. Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework. United States: N. p., 2015. Web. doi:10.1073/pnas.1514485112.
McGonigal, Paul R., Deria, Pravas, Hod, Idan, Moghadam, Peyman Z., Avestro, Alyssa-Jennifer, Horwitz, Noah E., Gibbs-Hall, Ian C., Blackburn, Anthea K., Chen, Dongyang, Botros, Youssry Y., Wasielewski, Michael R., Snurr, Randall Q., Hupp, Joseph T., Farha, Omar K., & Stoddart, J. Fraser. Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework. United States. doi:10.1073/pnas.1514485112.
McGonigal, Paul R., Deria, Pravas, Hod, Idan, Moghadam, Peyman Z., Avestro, Alyssa-Jennifer, Horwitz, Noah E., Gibbs-Hall, Ian C., Blackburn, Anthea K., Chen, Dongyang, Botros, Youssry Y., Wasielewski, Michael R., Snurr, Randall Q., Hupp, Joseph T., Farha, Omar K., and Stoddart, J. Fraser. Mon . "Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework". United States. doi:10.1073/pnas.1514485112.
@article{osti_1235145,
title = {Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework},
author = {McGonigal, Paul R. and Deria, Pravas and Hod, Idan and Moghadam, Peyman Z. and Avestro, Alyssa-Jennifer and Horwitz, Noah E. and Gibbs-Hall, Ian C. and Blackburn, Anthea K. and Chen, Dongyang and Botros, Youssry Y. and Wasielewski, Michael R. and Snurr, Randall Q. and Hupp, Joseph T. and Farha, Omar K. and Stoddart, J. Fraser},
abstractNote = {The organization of trisradical rotaxanes within the channels of a Zr6-based metal–organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust ZrIV–carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet–visible–near-infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR), and 1H nuclear magnetic resonance (NMR) spectroscopies all confirm the capture of redox-active rotaxanes within the mesoscale hexagonal channels of NU-1000. Cyclic voltammetry measurements performed on electroactive thin films of the resulting material indicate that redox-active viologen subunits located on the rotaxane components can be accessed electrochemically in the solid state. In contradistinction to previous methods, this strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal–organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines. In conclusion, the results presented here provide proof-of-concept for the application of postsynthetic transformations in the integration of dynamic molecular machines with robust porous frameworks.},
doi = {10.1073/pnas.1514485112},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 36,
volume = 112,
place = {United States},
year = {2015},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1073/pnas.1514485112

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reticular synthesis and the design of new materials
journal, June 2003

  • Yaghi, Omar M.; O'Keeffe, Michael; Ockwig, Nathan W.
  • Nature, Vol. 423, Issue 6941, p. 705-714
  • DOI: 10.1038/nature01650

CHEMISTRY: Enhanced: Better Living Through Nanopore Chemistry
journal, September 2005


Soft porous crystals
journal, November 2009

  • Horike, Satoshi; Shimomura, Satoru; Kitagawa, Susumu
  • Nature Chemistry, Vol. 1, Issue 9, p. 695-704
  • DOI: 10.1038/nchem.444

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks
journal, September 2011

  • Getman, Rachel B.; Bae, Youn-Sang; Wilmer, Christopher E.
  • Chemical Reviews, Vol. 112, Issue 2, p. 703-723
  • DOI: 10.1021/cr200217c

De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities
journal, September 2010

  • Farha, Omar K.; Özgür Yazaydın, A.; Eryazici, Ibrahim
  • Nature Chemistry, Vol. 2, Issue 11, p. 944-948
  • DOI: 10.1038/nchem.834

Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Metal–organic frameworks for artificial photosynthesis and photocatalysis
journal, January 2014


Metal–organic framework materials for light-harvesting and energy transfer
journal, January 2015

  • So, Monica C.; Wiederrecht, Gary P.; Mondloch, Joseph E.
  • Chemical Communications, Vol. 51, Issue 17
  • DOI: 10.1039/C4CC09596K

Robust dynamics
journal, May 2010

  • Deng, Hexiang; Olson, Mark A.; Stoddart, J. Fraser
  • Nature Chemistry, Vol. 2, Issue 6, p. 439-443
  • DOI: 10.1038/nchem.654

The chemistry of the mechanical bond
journal, January 2009

  • Stoddart, J. Fraser
  • Chemical Society Reviews, Vol. 38, Issue 6, p. 1802-1820
  • DOI: 10.1039/b819333a

Putting Mechanically Interlocked Molecules (MIMs) to Work in Tomorrow’s World
journal, September 2014


Channels and Cavities Lined with Interlocked Components: Metal-Based Polyrotaxanes That Utilize Pyridinium Axles and Crown Ether Wheels as Ligands
journal, January 2003

  • Davidson, Gregory J. E.; Loeb, Stephen J.
  • Angewandte Chemie International Edition, Vol. 42, Issue 1
  • DOI: 10.1002/anie.200390057

A Catenated Strut in a Catenated Metal-Organic Framework
journal, August 2010

  • Li, Qiaowei; Sue, Chi-Hau; Basu, Subhadeep
  • Angewandte Chemie International Edition, Vol. 49, Issue 38, p. 6751-6755
  • DOI: 10.1002/anie.201003221

A metal–organic framework replete with ordered donor–acceptor catenanes
journal, January 2010

  • Li, Qiaowei; Zhang, Wenyu; Miljanić, Ognjen Š.
  • Chemical Communications, Vol. 46, Issue 3, p. 380-382
  • DOI: 10.1039/B919923C

Coordination polymers containing rotaxane linkers
journal, January 2012

  • Vukotic, V. Nicholas; Loeb, Stephen J.
  • Chemical Society Reviews, Vol. 41, Issue 18
  • DOI: 10.1039/c2cs35141b

Metal–organic frameworks with dynamic interlocked components
journal, May 2012

  • Vukotic, V. Nicholas; Harris, Kristopher J.; Zhu, Kelong
  • Nature Chemistry, Vol. 4, Issue 6
  • DOI: 10.1038/nchem.1354

Metal-Organic Frameworks Incorporating Copper-Complexed Rotaxanes
journal, January 2012

  • Coskun, Ali; Hmadeh, Mohamad; Barin, Gokhan
  • Angewandte Chemie International Edition, Vol. 51, Issue 9, p. 2160-2163
  • DOI: 10.1002/anie.201107873

Metal ion directed metal–organic rotaxane frameworks with intrinsic features of self-penetration and interpenetration
journal, January 2013

  • Liang, Jun; Wang, Xin-Long; Jiao, Yan-Qing
  • Chemical Communications, Vol. 49, Issue 76
  • DOI: 10.1039/c3cc43990a

Three-Dimensional Architectures Incorporating Stereoregular Donor-Acceptor Stacks
journal, May 2013

  • Cao, Dennis; Juríček, Michal; Brown, Zachary J.
  • Chemistry - A European Journal, Vol. 19, Issue 26
  • DOI: 10.1002/chem.201300762

Metal–Organic Frameworks with Mechanically Interlocked Pillars: Controlling Ring Dynamics in the Solid-State via a Reversible Phase Change
journal, May 2014

  • Zhu, Kelong; Vukotic, V. Nicholas; O’Keefe, Christopher A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502238a

A [2]Catenane-Based Solid State Electronically Reconfigurable Switch
journal, August 2000


Two-Dimensional Molecular Electronics Circuits
journal, June 2002


Ground-State Equilibrium Thermodynamics and Switching Kinetics of Bistable [2]Rotaxanes Switched in Solution, Polymer Gels, and Molecular Electronic Devices
journal, January 2006

  • Choi, Jang Wook; Flood, Amar H.; Steuerman, David W.
  • Chemistry - A European Journal, Vol. 12, Issue 1
  • DOI: 10.1002/chem.200500934

A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre
journal, January 2007

  • Green, Jonathan E.; Wook Choi, Jang; Boukai, Akram
  • Nature, Vol. 445, Issue 7126, p. 414-417
  • DOI: 10.1038/nature05462

A solid-state switch containing an electrochemically switchable bistable poly[n]rotaxane
journal, January 2011

  • Zhang, Wenyu; DeIonno, Erica; Dichtel, William R.
  • J. Mater. Chem., Vol. 21, Issue 5
  • DOI: 10.1039/C0JM02269A

High hopes: can molecular electronics realise its potential?
journal, January 2012

  • Coskun, Ali; Spruell, Jason M.; Barin, Gokhan
  • Chemical Society Reviews, Vol. 41, Issue 14
  • DOI: 10.1039/c2cs35053j

CHEMISTRY: Enhanced: Whence Molecular Electronics?
journal, December 2004


Docking in Metal-Organic Frameworks
journal, August 2009

  • Li, Qiaowei; Zhang, Wenyu; Miljanic, Ognjen S.
  • Science, Vol. 325, Issue 5942, p. 855-859
  • DOI: 10.1126/science.1175441

Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure
journal, July 2005

  • Garcia-Garibay, M. A.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 31
  • DOI: 10.1073/pnas.0502816102

Symmetry and dynamics of molecular rotors in amphidynamic molecular crystals
journal, August 2010

  • Karlen, S. D.; Reyes, H.; Taylor, R. E.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 34
  • DOI: 10.1073/pnas.1008213107

Heterogeneity of functional groups in a metal–organic framework displays magic number ratios
journal, April 2015

  • Sue, Andrew C. -H.; Mannige, Ranjan V.; Deng, Hexiang
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 18
  • DOI: 10.1073/pnas.1416417112

A molecular shuttle that operates inside a metal–organic framework
journal, May 2015

  • Zhu, Kelong; O'Keefe, Christopher A.; Vukotic, V. Nicholas
  • Nature Chemistry, Vol. 7, Issue 6
  • DOI: 10.1038/nchem.2258

Factors affecting the threading of axle molecules through macrocycles: Binding constants for semirotaxane formation
journal, April 2002

  • Clifford, T.; Abushamleh, A.; Busch, D. H.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 8
  • DOI: 10.1073/pnas.062639799

Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Are Zr 6 -based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse
journal, January 2014

  • Mondloch, Joseph E.; Katz, Michael J.; Planas, Nora
  • Chemical Communications, Vol. 50, Issue 64
  • DOI: 10.1039/C4CC02401J

Defining the Proton Topology of the Zr6-Based Metal–Organic Framework NU-1000
journal, October 2014

  • Planas, Nora; Mondloch, Joseph E.; Tussupbayev, Samat
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21, p. 3716-3723
  • DOI: 10.1021/jz501899j

Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies
journal, October 2013

  • Deria, Pravas; Mondloch, Joseph E.; Tylianakis, Emmanuel
  • Journal of the American Chemical Society, Vol. 135, Issue 45, p. 16801-16804
  • DOI: 10.1021/ja408959g

Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement
journal, January 2014

  • Deria, Pravas; Mondloch, Joseph E.; Karagiaridi, Olga
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00067F

MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates
journal, February 2015

  • Deria, Pravas; Bury, Wojciech; Hod, Idan
  • Inorganic Chemistry, Vol. 54, Issue 5
  • DOI: 10.1021/ic502639v

Radically enhanced molecular recognition
journal, December 2009

  • Trabolsi, Ali; Khashab, Niveen; Fahrenbach, Albert C.
  • Nature Chemistry, Vol. 2, Issue 1
  • DOI: 10.1038/nchem.479

Mechanical Bond Formation by Radical Templation
journal, September 2010

  • Li, Hao; Fahrenbach, Albert C.; Dey, Sanjeev K.
  • Angewandte Chemie International Edition, Vol. 49, Issue 44, p. 8260-8265
  • DOI: 10.1002/anie.201004488

Solution-Phase Mechanistic Study and Solid-State Structure of a Tris(bipyridinium radical cation) Inclusion Complex
journal, February 2012

  • Fahrenbach, Albert C.; Barnes, Jonathan C.; Lanfranchi, Don Antoine
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja2089603

A Radically Configurable Six-State Compound
journal, January 2013


Mechanical Bond-Induced Radical Stabilization
journal, December 2012

  • Li, Hao; Zhu, Zhixue; Fahrenbach, Albert C.
  • Journal of the American Chemical Society, Vol. 135, Issue 1
  • DOI: 10.1021/ja310060n

Solid-State Characterization and Photoinduced Intramolecular Electron Transfer in a Nanoconfined Octacationic Homo[2]Catenane
journal, July 2014

  • Barnes, Jonathan C.; Frasconi, Marco; Young, Ryan M.
  • Journal of the American Chemical Society, Vol. 136, Issue 30
  • DOI: 10.1021/ja505093d

Relative contractile motion of the rings in a switchable palindromic [3]rotaxane in aqueous solution driven by radical-pairing interactions
journal, January 2014

  • Witus, Leah S.; Hartlieb, Karel J.; Wang, Yuping
  • Org. Biomol. Chem., Vol. 12, Issue 32
  • DOI: 10.1039/C4OB01228C

Energetically Demanding Transport in a Supramolecular Assembly
journal, October 2014

  • Cheng, Chuyang; McGonigal, Paul R.; Liu, Wei-Guang
  • Journal of the American Chemical Society, Vol. 136, Issue 42
  • DOI: 10.1021/ja508615f

Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions
journal, March 2014

  • Bruns, Carson J.; Frasconi, Marco; Iehl, Julien
  • Journal of the American Chemical Society, Vol. 136, Issue 12
  • DOI: 10.1021/ja500675y

Radicals in metal–organic frameworks
journal, January 2014

  • Faust, Thomas B.; D'Alessandro, Deanna M.
  • RSC Adv., Vol. 4, Issue 34
  • DOI: 10.1039/c4ra00958d

Directed Growth of Electroactive Metal-Organic Framework Thin Films Using Electrophoretic Deposition
journal, July 2014

  • Hod, Idan; Bury, Wojciech; Karlin, David M.
  • Advanced Materials, Vol. 26, Issue 36
  • DOI: 10.1002/adma.201401940

Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal–Organic Framework Compound
journal, February 2015

  • Hod, Idan; Bury, Wojciech; Gardner, Daniel M.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 4
  • DOI: 10.1021/acs.jpclett.5b00019

Molecular Electronics
journal, August 2009


A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions
journal, September 2011

  • Allendorf, Mark D.; Schwartzberg, Adam; Stavila, Vitalie
  • Chemistry - A European Journal, Vol. 17, Issue 41, p. 11372-11388
  • DOI: 10.1002/chem.201101595

Molecular Rotors and Motors: Recent Advances and Future Challenges
journal, April 2009

  • Michl, Josef; Sykes, E. Charles H.
  • ACS Nano, Vol. 3, Issue 5
  • DOI: 10.1021/nn900411n

Crystalline molecular machines: function, phase order, dimensionality, and composition
journal, January 2012

  • Vogelsberg, Cortnie S.; Garcia-Garibay, Miguel A.
  • Chem. Soc. Rev., Vol. 41, Issue 5
  • DOI: 10.1039/c1cs15197e

    Works referencing / citing this record:

    Acid-Base Switchable [2]- and [3]Rotaxane Molecular Shuttles with Benzimidazolium and Bis(pyridinium) Recognition Sites
    journal, October 2016

    • Zhu, Kelong; Vukotic, V. Nicholas; Loeb, Stephen J.
    • Chemistry - An Asian Journal, Vol. 11, Issue 22
    • DOI: 10.1002/asia.201601179

    A stable electron-deficient metal–organic framework for colorimetric and luminescence sensing of phenols and anilines
    journal, January 2018

    • Gong, Teng; Li, Peng; Sui, Qi
    • Journal of Materials Chemistry A, Vol. 6, Issue 19
    • DOI: 10.1039/c8ta02794c

    Coordination-modulated piezochromism in metal–viologen materials
    journal, January 2017

    • Sui, Qi; Yuan, Ye; Yang, Ning-Ning
    • Journal of Materials Chemistry C, Vol. 5, Issue 47
    • DOI: 10.1039/c7tc04208f

    Formation of an interlocked double-chain from an organic–inorganic [2]rotaxane
    journal, January 2019

    • Ferrando-Soria, Jesús; Fernandez, Antonio; Vitorica-Yrezabal, Iñigo J.
    • Chemical Communications, Vol. 55, Issue 20
    • DOI: 10.1039/c8cc09339c

    Piezochromism and hydrochromism through electron transfer: new stories for viologen materials
    journal, January 2017

    • Sui, Qi; Ren, Xiang-Ting; Dai, Yu-Xiang
    • Chemical Science, Vol. 8, Issue 4
    • DOI: 10.1039/c6sc04579k

    Rigid, Bistable Molecular Shuttles Combining T-shaped Benzimidazolium and Y-shaped Imidazolium Recognition Sites
    journal, March 2016


    Metal–organic frameworks utilising an interlocked, hexadentate linker containing a tetra-carboxylate axle and a bis(pyridine) wheel
    journal, January 2017

    • Gholami, Ghazale; Baggi, Giorgio; Zhu, Kelong
    • Dalton Transactions, Vol. 46, Issue 8
    • DOI: 10.1039/c6dt04596k

    Redox-active metal–organic frameworks for energy conversion and storage
    journal, January 2019

    • Calbo, Joaquín; Golomb, Matthias J.; Walsh, Aron
    • Journal of Materials Chemistry A, Vol. 7, Issue 28
    • DOI: 10.1039/c9ta04680a

    Supramolecular Isomers of Coordination-Directed Side-Chain Polypseudorotaxanes Based on Trimeric Uranyl Oxalate Nodes
    journal, June 2017

    • Ge, Yun-chen; Mei, Lei; Xie, Zhen-ni
    • Chemistry - A European Journal, Vol. 23, Issue 35
    • DOI: 10.1002/chem.201701706

    A Boat-Shaped Tetracationic Macrocycle with a Semiconducting Organic Framework
    journal, April 2017

    • Nguyen, Minh T.; Krzyaniak, Matthew D.; Owczarek, Magdalena
    • Angewandte Chemie International Edition, Vol. 56, Issue 21
    • DOI: 10.1002/anie.201702019

    Post-synthetic modification of a macrocyclic receptor via regioselective imidazolium ring-opening
    journal, January 2016

    • Shang, Jia; Rambo, Brett M.; Hao, Xiang
    • Chemical Science, Vol. 7, Issue 7
    • DOI: 10.1039/c5sc04860e

    Symbiotic Control in Mechanical Bond Formation
    journal, September 2016

    • Wang, Yuping; Sun, Junling; Liu, Zhichang
    • Angewandte Chemie International Edition, Vol. 55, Issue 40
    • DOI: 10.1002/anie.201605454