skip to main content

DOE PAGESDOE PAGES

Title: Reply to “Comment on ‘Molybdenum sound velocity and shear modulus softening under shock compression’”

Here, we respond to the Comment by Errandonea et al. [Phys. Rev. B 92, 026101 (2015)] on their reinterpretation of our published data [Nguyen et al., Phys. Rev. B 89, 174109 (2014)]. In the original paper, we argued that there is no solid-solid phase transition along the Hugoniot at 2.1 Mbars. There is, however, a softening of the shear modulus starting at 2.6 Mbars. Errandonea et al. [Phys. Rev. B 92, 026101 (2015)] reinterpreted our data and concluded that there is a structural change near 2.3 Mbars on the Hugoniot. Finally, we will explore the differences and agreements in the two interpretations of our data.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States)
Publication Date:
Report Number(s):
LLNL-JRNL-671144
Journal ID: ISSN 1098-0121; PRBMDO
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 2; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1234584
Alternate Identifier(s):
OSTI ID: 1202639