DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Automated transient identification in the Dark Energy Survey

Abstract

We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility. An implementation of the algorithm and the training data used in this paper are available at http://portal.nserc.gov/project/dessn/autoscan.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [2];  [7];  [2];  [3];  [8];  [8];  [7];  [9];  [3];  [10];  [11];  [10];  [12] more »;  [10];  [13];  [14];  [15];  [16];  [17];  [18];  [9];  [10];  [19];  [20];  [9];  [9];  [14];  [21];  [22];  [23];  [24];  [25];  [26];  [9];  [10];  [17];  [13];  [27];  [3];  [17];  [28];  [9];  [29];  [9];  [13];  [30];  [31];  [32];  [33];  [9];  [22];  [34];  [35];  [9];  [36];  [28];  [16];  [22];  [4];  [35] « less
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of Portsmouth, Portsmouth (United Kingdom)
  3. Univ. of Pennsylvania, Philadelphia, PA (United States)
  4. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
  6. Univ. of Chicago,Chicago, IL (United States)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  8. Univ. of Southampton, Southampton (United Kingdom)
  9. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  10. Univ. College London, London (United Kingdom)
  11. Univ. of Cambridge, Cambridge (United Kingdom)
  12. Univ. Pierre et Marie Curie, and CNRS, Paris (France)
  13. Lab. Interinstitucional de e-Astronomia - LIneA, Rio de Janeiro (Brazil); Observatorio Nacional, Rio de Janieiro (Brazil)
  14. Institut de Ciencies de l'Espai, Barcelona (Spain)
  15. Lab. Interinstitucional de e-Astonomia, Rio de Janeiro (Brazil); Observatorio Nacional, Rio de Janeiro (Brazil)
  16. National Center for Supercomputing Applications, Urbana, IL (United States)
  17. Texas A & M Univ., College Station, TX (United States)
  18. Ludwig Maximilian Univ., Muenchen (Germany)
  19. Univ. of Pennsylvania, Philadelphia, PA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States)
  20. Lab. Interinstitucional de e-Astronomia LIneA, Rio de Janeiro (Brazil)
  21. Univ. of Chicago,Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  22. Univ. of Michigan, Ann Arbor, MI (United States)
  23. Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Univ. Observatory Munich, Munich (Germany)
  24. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); National Center for Supercomputing Applications, Urbana, IL (United States)
  25. National Optical Astronomy Observatory, La Serena (Chile)
  26. Austrilian Astronomical Observatory, North Ryde (Australia)
  27. Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil)
  28. The Ohio State Univ., Columbus, OH (United States)
  29. Univ. Autonoma de Barcelona, Barcelona (Spain); Institucio Catalana de Recerca i Estudis, Barcelona (Spain)
  30. California Inst. of Technology (CalTech), Pasadena, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States)
  31. Univ. of Sussex, Brighton (United Kingdom)
  32. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  33. Centro de Investigaciones Energeticas, Madrid (Spain)
  34. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Centro de Investigaciones Energeticas, Madrid (Spain)
  35. National Optical Astronomy Observatory, North Ryde (Australia)
  36. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lab. Interinstitucional de e-Astronomia LIneA, Rio de Janeiro (Brazil)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP)
OSTI Identifier:
1234374
Alternate Identifier(s):
OSTI ID: 1311819; OSTI ID: 1812341
Report Number(s):
BNL-111654-2015-JA; SLAC-PUB-16709
Journal ID: ISSN 1538-3881; KA2301020
Grant/Contract Number:  
SC00112704; AC02-76SF00515; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
The Astronomical Journal (Online)
Additional Journal Information:
Journal Name: The Astronomical Journal (Online); Journal Volume: 150; Journal Issue: 3; Journal ID: ISSN 1538-3881
Publisher:
IOP Publishing - AAAS
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; transients; discovery, algorithms; statistical, random forest; machine learning; 97 MATHEMATICS AND COMPUTING; discovery; algorithms; statistical; random forest

Citation Formats

Goldstein, D. A., D'Andrea, C. B., Fischer, J. A., Foley, R. J., Gupta, R. R., Kessler, R., Kim, A. G., Nichol, R. C., Nungent, P., Papadopoulos, A., Sako, M., Smith, M., Sullivan, M., Thomas, R. C., Wester, W., Wolf, R. C., Abdalla, F. B., Banjeri, M., Benoit-Levy, A., Bertin, E., Brooks, D., Rosell, A. Carnero, Castander, F. J., da Costa, L. N., Covarrubias, R., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Neto, A. Fausti, Finley, D. A., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D., Gruen, D., Gruendl, R. A., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Maia, M. A. G., Makler, M., March, M., Marshall, J. L., Martini, P., Merritt, K. W., Miquel, R., Nord, B., Ogando, R., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., and Walker, A. R. Automated transient identification in the Dark Energy Survey. United States: N. p., 2015. Web. doi:10.1088/0004-6256/150/3/82.
Goldstein, D. A., D'Andrea, C. B., Fischer, J. A., Foley, R. J., Gupta, R. R., Kessler, R., Kim, A. G., Nichol, R. C., Nungent, P., Papadopoulos, A., Sako, M., Smith, M., Sullivan, M., Thomas, R. C., Wester, W., Wolf, R. C., Abdalla, F. B., Banjeri, M., Benoit-Levy, A., Bertin, E., Brooks, D., Rosell, A. Carnero, Castander, F. J., da Costa, L. N., Covarrubias, R., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Neto, A. Fausti, Finley, D. A., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D., Gruen, D., Gruendl, R. A., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Maia, M. A. G., Makler, M., March, M., Marshall, J. L., Martini, P., Merritt, K. W., Miquel, R., Nord, B., Ogando, R., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., & Walker, A. R. Automated transient identification in the Dark Energy Survey. United States. https://doi.org/10.1088/0004-6256/150/3/82
Goldstein, D. A., D'Andrea, C. B., Fischer, J. A., Foley, R. J., Gupta, R. R., Kessler, R., Kim, A. G., Nichol, R. C., Nungent, P., Papadopoulos, A., Sako, M., Smith, M., Sullivan, M., Thomas, R. C., Wester, W., Wolf, R. C., Abdalla, F. B., Banjeri, M., Benoit-Levy, A., Bertin, E., Brooks, D., Rosell, A. Carnero, Castander, F. J., da Costa, L. N., Covarrubias, R., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Neto, A. Fausti, Finley, D. A., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D., Gruen, D., Gruendl, R. A., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Maia, M. A. G., Makler, M., March, M., Marshall, J. L., Martini, P., Merritt, K. W., Miquel, R., Nord, B., Ogando, R., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., and Walker, A. R. Tue . "Automated transient identification in the Dark Energy Survey". United States. https://doi.org/10.1088/0004-6256/150/3/82. https://www.osti.gov/servlets/purl/1234374.
@article{osti_1234374,
title = {Automated transient identification in the Dark Energy Survey},
author = {Goldstein, D. A. and D'Andrea, C. B. and Fischer, J. A. and Foley, R. J. and Gupta, R. R. and Kessler, R. and Kim, A. G. and Nichol, R. C. and Nungent, P. and Papadopoulos, A. and Sako, M. and Smith, M. and Sullivan, M. and Thomas, R. C. and Wester, W. and Wolf, R. C. and Abdalla, F. B. and Banjeri, M. and Benoit-Levy, A. and Bertin, E. and Brooks, D. and Rosell, A. Carnero and Castander, F. J. and da Costa, L. N. and Covarrubias, R. and DePoy, D. L. and Desai, S. and Diehl, H. T. and Doel, P. and Eifler, T. F. and Neto, A. Fausti and Finley, D. A. and Flaugher, B. and Fosalba, P. and Frieman, J. and Gerdes, D. and Gruen, D. and Gruendl, R. A. and James, D. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and Li, T. S. and Maia, M. A. G. and Makler, M. and March, M. and Marshall, J. L. and Martini, P. and Merritt, K. W. and Miquel, R. and Nord, B. and Ogando, R. and Plazas, A. A. and Romer, A. K. and Roodman, A. and Sanchez, E. and Scarpine, V. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thaler, J. and Walker, A. R.},
abstractNote = {We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility. An implementation of the algorithm and the training data used in this paper are available at http://portal.nserc.gov/project/dessn/autoscan.},
doi = {10.1088/0004-6256/150/3/82},
journal = {The Astronomical Journal (Online)},
number = 3,
volume = 150,
place = {United States},
year = {Tue Sep 01 00:00:00 EDT 2015},
month = {Tue Sep 01 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 105 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Mathematical Theory of Communication
journal, July 1948


The High‐Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae
journal, November 1998

  • Schmidt, Brian P.; Suntzeff, Nicholas B.; Phillips, M. M.
  • The Astrophysical Journal, Vol. 507, Issue 1
  • DOI: 10.1086/306308

How to Find More Supernovae with Less Work: Object Classification Techniques for Difference Imaging
journal, August 2007

  • Bailey, S.; Aragon, C.; Romano, R.
  • The Astrophysical Journal, Vol. 665, Issue 2
  • DOI: 10.1086/519832

The QUEST Large Area CCD Camera
journal, November 2007

  • Baltay, C.; Rabinowitz, D.; Andrews, P.
  • Publications of the Astronomical Society of the Pacific, Vol. 119, Issue 861
  • DOI: 10.1086/523899

SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

Measurement of Inequality of Incomes
journal, March 1921

  • Gini, Corrado
  • The Economic Journal, Vol. 31, Issue 121
  • DOI: 10.2307/2223319

The 1990 Calan/Tololo Supernova Search
journal, December 1993

  • Hamuy, Mario; Maza, Jose; Phillips, M. M.
  • The Astronomical Journal, Vol. 106
  • DOI: 10.1086/116811

Main-belt comets in the Palomar Transient Factory survey – I. The search for extendedness
journal, June 2013

  • Waszczak, A.; Ofek, E. O.; Aharonson, O.
  • Monthly Notices of the Royal Astronomical Society, Vol. 433, Issue 4
  • DOI: 10.1093/mnras/stt951

The Sloan Digital sky Survey-Ii Supernova Survey: Search Algorithm and Follow-Up Observations
journal, December 2007


The Zwicky transient facility observing system
conference, July 2014

  • Smith, Roger M.; Dekany, Richard G.; Bebek, Christopher
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2070014

The Dark Energy Survey and operations: Year 1
conference, August 2014

  • Diehl, H. T.; Abbott, T. M. C.; Annis, J.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2056982

Using machine learning for discovery in synoptic survey imaging data
journal, August 2013

  • Brink, Henrik; Richards, Joseph W.; Poznanski, Dovi
  • Monthly Notices of the Royal Astronomical Society, Vol. 435, Issue 2
  • DOI: 10.1093/mnras/stt1306

On Machine-Learned Classification of Variable Stars with Sparse and Noisy Time-Series data
journal, April 2011

  • Richards, Joseph W.; Starr, Dan L.; Butler, Nathaniel R.
  • The Astrophysical Journal, Vol. 733, Issue 1
  • DOI: 10.1088/0004-637X/733/1/10

Galaxy Zoo: reproducing galaxy morphologies via machine learning★: Galaxy Zoo: morphology via machine learning
journal, April 2010


Overview of the Nearby Supernova Factory
conference, December 2002

  • Aldering, Greg; Adam, G.; Antilogus, P.
  • Astronomical Telescopes and Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.458107

A Method for Optimal Image Subtraction
journal, August 1998

  • Alard, C.; Lupton, Robert H.
  • The Astrophysical Journal, Vol. 503, Issue 1
  • DOI: 10.1086/305984

SNANA: A Public Software Package for Supernova Analysis
journal, September 2009

  • Kessler, Richard; Bernstein, Joseph P.; Cinabro, David
  • Publications of the Astronomical Society of the Pacific, Vol. 121, Issue 883
  • DOI: 10.1086/605984

Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars: Core-collapse supernova fractions
journal, March 2011


Active Learning to Overcome Sample Selection Bias: Application to Photometric Variable star Classification
journal, December 2011


The Sloan Digital sky Survey-Ii Supernova Survey: Technical Summary
journal, December 2007


Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era
journal, November 2012

  • Bloom, J. S.; Richards, J. W.; Nugent, P. E.
  • Publications of the Astronomical Society of the Pacific, Vol. 124, Issue 921
  • DOI: 10.1086/668468

The Dark Energy Survey
journal, June 2005


Status of the Dark Energy Survey Camera (DECam) project
conference, September 2012

  • Flaugher, Brenna L.; Abbott, Timothy M. C.; Angstadt, Robert
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.926216

The Blanco Cosmology Survey: data Acquisition, Processing, Calibration, Quality Diagnostics, and data Release
journal, September 2012


The Supernova Legacy Survey: measurement of $\Omega_{\mathsf{M}}$, $\Omega_\mathsf{\Lambda}$ and w from the first year data set
journal, January 2006


Alternatives to the Median Absolute Deviation
journal, December 1993


Type Ia supernova rate at a redshift of ~0.1
journal, August 2004


PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA
journal, August 2011


The Hubble Higher z Supernova Search: Supernovae to z ≈ 1.6 and Constraints on Type Ia Progenitor Models
journal, September 2004

  • Strolger, Louis‐Gregory; Riess, Adam G.; Dahlen, Tomas
  • The Astrophysical Journal, Vol. 613, Issue 1
  • DOI: 10.1086/422901

The Nature of Statistical Learning Theory
book, January 1995


Cosmic‐Ray Rejection by Laplacian Edge Detection
journal, November 2001

  • van Dokkum, Pieter G.
  • Publications of the Astronomical Society of the Pacific, Vol. 113, Issue 789
  • DOI: 10.1086/323894

A simple and robust method for automated photometric classification of supernovae using neural networks
journal, December 2012

  • Karpenka, N. V.; Feroz, F.; Hobson, M. P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 429, Issue 2
  • DOI: 10.1093/mnras/sts412

Supernova Simulations and Strategies for the dark Energy Survey
journal, June 2012


COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY
journal, October 2014


PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE
journal, March 2011


Sunfall: a collaborative visual analytics system for astrophysics
journal, July 2008


Random Forests
journal, January 2001


The Dark Energy Survey Camera (DECam)
journal, January 2012


Machine learning for transient discovery in Pan-STARRS1 difference imaging
journal, March 2015

  • Wright, D. E.; Smartt, S. J.; Smith, K. W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 449, Issue 1
  • DOI: 10.1093/mnras/stv292

Works referencing / citing this record:

The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory
journal, December 2016

  • Masci, Frank J.; Laher, Russ R.; Rebbapragada, Umaa D.
  • Publications of the Astronomical Society of the Pacific, Vol. 129, Issue 971
  • DOI: 10.1088/1538-3873/129/971/014002

Automated Transient Detection with Shapelet Analysis in Image-subtracted Data
text, January 2019


A DECam Search for Explosive Optical Transients Associated with IceCube Neutrinos
text, January 2019


Automated Transient Detection with Shapelet Analysis in Image-subtracted Data
journal, October 2019

  • Ackley, Kendall; Eikenberry, Stephen S.; Yildirim, Ceren
  • The Astronomical Journal, Vol. 158, Issue 5
  • DOI: 10.3847/1538-3881/ab3c4b

GROWTH on S190510g: DECam Observation Planning and Follow-up of a Distant Binary Neutron Star Merger Candidate
journal, August 2019

  • Andreoni, Igor; Goldstein, Daniel A.; Anand, Shreya
  • The Astrophysical Journal, Vol. 881, Issue 1
  • DOI: 10.3847/2041-8213/ab3399

Cosmological Constraints from Multiple Probes in the Dark Energy Survey
text, January 2018


A Search for Optical Emission from Binary Black Hole Merger GW170814 with the Dark Energy Camera
journal, March 2019


A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline
journal, November 2018

  • Tachibana, Yutaro; Miller, A. A.
  • Publications of the Astronomical Society of the Pacific, Vol. 130, Issue 994
  • DOI: 10.1088/1538-3873/aae3d9

Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey
journal, July 2018


Host Galaxy Identification for Supernova Surveys
journal, November 2016


GROWTH on S190426c: Real-time Search for a Counterpart to the Probable Neutron Star–Black Hole Merger using an Automated Difference Imaging Pipeline for DECam
journal, August 2019

  • Goldstein, Daniel A.; Andreoni, Igor; Nugent, Peter E.
  • The Astrophysical Journal, Vol. 881, Issue 1
  • DOI: 10.3847/2041-8213/ab3046

The Dark Energy Survey Image Processing Pipeline
text, January 2018


Superluminous Supernovae from the Dark Energy Survey
text, January 2018


First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation
journal, April 2019


Cosmological Constraints from Multiple Probes in the Dark Energy Survey
journal, May 2019


A Deep Learning Approach to Galaxy Cluster X-Ray Masses
journal, May 2019


Dynamical Analysis of Three Distant Trans-Neptunian Objects with Similar Orbits
journal, November 2018


Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High Orbital Inclination
journal, August 2018


Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream
journal, May 2018

  • Narayan, Gautham; Zaidi, Tayeb; Soraisam, Monika D.
  • The Astrophysical Journal Supplement Series, Vol. 236, Issue 1
  • DOI: 10.3847/1538-4365/aab781

A transient search using combined human and machine classifications
journal, July 2017

  • Wright, Darryl E.; Lintott, Chris J.; Smartt, Stephen J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 472, Issue 2
  • DOI: 10.1093/mnras/stx1812

A DECam Search for Explosive Optical Transients Associated with IceCube Neutrino Alerts
journal, September 2019


Characterizing the local relation between star formation rate and gas-phase metallicity in MaNGA spiral galaxies
text, January 2019


The Dark Energy Survey: more than dark energy – an overview
journal, March 2016

  • Abbott, T.; Abdalla, F. B.; Aleksic, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 460, Issue 2, p. 1270-1299
  • DOI: 10.1093/mnras/stw641

First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters
journal, February 2019


The Dark Energy Survey: more than dark energy - an overview
text, January 2016


Machine Learning-based Brokers for Real-time Classification of the LSST Alert Stream
text, January 2018


Dynamical Analysis of Three Distant Trans-Neptunian Objects with Similar Orbits
text, January 2018


A DECam Search for Explosive Optical Transients Associated with IceCube Neutrinos
text, January 2019


Characterizing the Local Relation between Star Formation Rate and Gas-phase Metallicity in MaNGA Spiral Galaxies
journal, August 2019

  • Sánchez-Menguiano, Laura; Almeida, Jorge Sánchez; Muñoz-Tuñón, Casiana
  • The Astrophysical Journal, Vol. 882, Issue 1
  • DOI: 10.3847/1538-4357/ab3044

Rapidly evolving transients in the Dark Energy Survey
journal, August 2018

  • Pursiainen, M.; Childress, M.; Smith, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 1
  • DOI: 10.1093/mnras/sty2309

Machine Learning for the Zwicky Transient Facility
journal, January 2019

  • Mahabal, Ashish; Rebbapragada, Umaa; Walters, Richard
  • Publications of the Astronomical Society of the Pacific, Vol. 131, Issue 997
  • DOI: 10.1088/1538-3873/aaf3fa

Optical Transient Object Classification in Wide-field Small Aperture Telescopes with a Neural Network
journal, June 2019


The Dark Energy Survey Image Processing Pipeline
journal, May 2018

  • Morganson, E.; Gruendl, R. A.; Menanteau, F.
  • Publications of the Astronomical Society of the Pacific, Vol. 130, Issue 989
  • DOI: 10.1088/1538-3873/aab4ef

Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two
journal, February 2018


An analysis of feature relevance in the classification of astronomical transients with machine learning methods
journal, February 2016

  • D'Isanto, A.; Cavuoti, S.; Brescia, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 457, Issue 3
  • DOI: 10.1093/mnras/stw157

First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release
journal, March 2019


First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases
journal, February 2019

  • Kessler, R.; Brout, D.; D’Andrea, C. B.
  • Monthly Notices of the Royal Astronomical Society, Vol. 485, Issue 1
  • DOI: 10.1093/mnras/stz463

Rapidly evolving transients in the Dark Energy Survey
text, January 2018


Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey
text, January 2018

  • Mudd, D.; Martini, P.; Zu, Y.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.20889

Superluminous supernovae from the Dark Energy Survey
journal, May 2019

  • Angus, C. R.; Smith, M.; Sullivan, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 487, Issue 2
  • DOI: 10.1093/mnras/stz1321