DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bandwidth and Electron Correlation-Tuned Superconductivity in Rb 0.8 Fe 2 ( Se 1 - z S z ) 2

Abstract

Here, we present a systematic angle-resolved photoemission spectroscopy study of the substitution dependence of the electronic structure of Rb0.8Fe2(Se1-zSz)2 (z = 0, 0.5, 1), where superconductivity is continuously suppressed into a metallic phase. Going from the nonsuperconducting Rb0.8Fe2S2 to superconducting Rb0.8Fe2Se2, we observe little change of the Fermi surface topology, but a reduction of the overall bandwidth by a factor of 2. Hence, for these heavily electron-doped iron chalcogenides, we have identified electron correlation as explicitly manifested in the quasiparticle bandwidth to be the important tuning parameter for superconductivity, and that moderate correlation is essential to achieving high TC.

Authors:
 [1];  [1];  [2];  [3];  [3];  [4];  [5];  [6];  [6];  [7];  [8]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division
  5. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials, Dept. of Physics and Applied Physics
  8. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1393002
Alternate Identifier(s):
OSTI ID: 1229909
Grant/Contract Number:  
AC02-05CH11231; AC03-76SF008
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 115; Journal Issue: 25; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Yi, M., Wang, Meng, Kemper, A. F., Mo, S. -K., Hussain, Z., Bourret-Courchesne, E., Lanzara, A., Hashimoto, M., Lu, D. H., Shen, Z. -X., and Birgeneau, R. J. Bandwidth and Electron Correlation-Tuned Superconductivity in Rb0.8Fe2(Se1-zSz)2. United States: N. p., 2015. Web. doi:10.1103/PhysRevLett.115.256403.
Yi, M., Wang, Meng, Kemper, A. F., Mo, S. -K., Hussain, Z., Bourret-Courchesne, E., Lanzara, A., Hashimoto, M., Lu, D. H., Shen, Z. -X., & Birgeneau, R. J. Bandwidth and Electron Correlation-Tuned Superconductivity in Rb0.8Fe2(Se1-zSz)2. United States. https://doi.org/10.1103/PhysRevLett.115.256403
Yi, M., Wang, Meng, Kemper, A. F., Mo, S. -K., Hussain, Z., Bourret-Courchesne, E., Lanzara, A., Hashimoto, M., Lu, D. H., Shen, Z. -X., and Birgeneau, R. J. Tue . "Bandwidth and Electron Correlation-Tuned Superconductivity in Rb0.8Fe2(Se1-zSz)2". United States. https://doi.org/10.1103/PhysRevLett.115.256403. https://www.osti.gov/servlets/purl/1393002.
@article{osti_1393002,
title = {Bandwidth and Electron Correlation-Tuned Superconductivity in Rb0.8Fe2(Se1-zSz)2},
author = {Yi, M. and Wang, Meng and Kemper, A. F. and Mo, S. -K. and Hussain, Z. and Bourret-Courchesne, E. and Lanzara, A. and Hashimoto, M. and Lu, D. H. and Shen, Z. -X. and Birgeneau, R. J.},
abstractNote = {Here, we present a systematic angle-resolved photoemission spectroscopy study of the substitution dependence of the electronic structure of Rb0.8Fe2(Se1-zSz)2 (z = 0, 0.5, 1), where superconductivity is continuously suppressed into a metallic phase. Going from the nonsuperconducting Rb0.8Fe2S2 to superconducting Rb0.8Fe2Se2, we observe little change of the Fermi surface topology, but a reduction of the overall bandwidth by a factor of 2. Hence, for these heavily electron-doped iron chalcogenides, we have identified electron correlation as explicitly manifested in the quasiparticle bandwidth to be the important tuning parameter for superconductivity, and that moderate correlation is essential to achieving high TC.},
doi = {10.1103/PhysRevLett.115.256403},
journal = {Physical Review Letters},
number = 25,
volume = 115,
place = {United States},
year = {Tue Dec 15 00:00:00 EST 2015},
month = {Tue Dec 15 00:00:00 EST 2015}
}

Journal Article:

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition
journal, April 2011

  • Yi, M.; Lu, D.; Chu, J. -H.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 17
  • DOI: 10.1073/pnas.1015572108

Electronic states and phases of KxC60 from photoemission and X-ray absorption spectroscopy
journal, August 1991

  • Chen, C. T.; Tjeng, L. H.; Rudolf, P.
  • Nature, Vol. 352, Issue 6336
  • DOI: 10.1038/352603a0

Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy
journal, February 2011

  • Zhang, Y.; Yang, L. X.; Xu, M.
  • Nature Materials, Vol. 10, Issue 4
  • DOI: 10.1038/nmat2981

Observation of universal strong orbital-dependent correlation effects in iron chalcogenides
journal, July 2015

  • Yi, M.; Liu, Z-K; Zhang, Y.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8777

Extraordinary Doping Effects on Quasiparticle Scattering and Bandwidth in Iron-Based Superconductors
journal, September 2014


Structural Phase Separation in K 0.8 Fe 1.6+ x Se 2 Superconductors
journal, August 2012

  • Wang, Zhi-Wei; Wang, Zhen; Song, Yuan-Jun
  • The Journal of Physical Chemistry C, Vol. 116, Issue 33
  • DOI: 10.1021/jp306310m

Two spatially separated phases in semiconducting Rb 0.8 Fe 1.5 S 2
journal, September 2014


Strong Electronic Correlations in Iron Pnictides: Comparison of Optical Spectra for BaFe 2 As 2 -Related Compounds
journal, October 2014

  • Nakajima, Masamichi; Ishida, Shigeyuki; Tanaka, Takahide
  • Journal of the Physical Society of Japan, Vol. 83, Issue 10
  • DOI: 10.7566/JPSJ.83.104703

Mott Transition in Modulated Lattices and Parent Insulator of ( K , Tl ) y Fe x Se 2 Superconductors
journal, May 2011


Large Temperature Dependence of the Number of Carriers in Co-Doped BaFe 2 As 2
journal, April 2013


Phase Diagram of K x Fe 2 y Se 2 z S z and the Suppression of its Superconducting State by an Fe 2 Se / S Tetrahedron Distortion
journal, September 2011


Spin waves and spatially anisotropic exchange interactions in the S = 2 stripe antiferromagnet Rb 0.8 Fe 1.5 S 2
journal, July 2015


Strongly Correlated Superconductivity
journal, June 2002


A Novel Large Moment Antiferromagnetic Order in K 0.8 Fe 1.6 Se 2 Superconductor
journal, August 2011


Coexistence of superconductivity and magnetism in K x Fe 2 y Se 2 z S z ( z = 0,0.4)
journal, November 2011


Fermi-Surface Shrinking and Interband Coupling in Iron-Based Pnictides
journal, July 2009


Correlation between superconductivity and antiferromagnetism in Rb 0.8 Fe 2 y Se 2 x Te x single crystals
journal, May 2012


NMR Study in the Iron-Selenide Rb 0.74 Fe 1.6 Se 2 : Determination of the Superconducting Phase as Iron Vacancy-Free Rb 0.3 Fe 2 Se 2
journal, June 2012


Antiferromagnetically driven electronic correlations in iron pnictides and cuprates
journal, August 2009


Polymorphism control of superconductivity and magnetism in Cs3C60 close to the Mott transition
journal, May 2010

  • Ganin, Alexey Y.; Takabayashi, Yasuhiro; Jeglič, Peter
  • Nature, Vol. 466, Issue 7303, p. 221-225
  • DOI: 10.1038/nature09120

Dynamic competition between spin-density wave order and superconductivity in underdoped Ba1−xKxFe2As2
journal, April 2014

  • Yi, M.; Zhang, Y.; Liu, Z. -K.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4711

Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a ( Tl 0.58 Rb 0.42 ) Fe 1.72 Se 2 Superconductor
journal, March 2011


Intrinsic crystal phase separation in the antiferromagnetic superconductor Rb y Fe 2− x Se 2 : a diffraction study
journal, October 2012

  • Yu Pomjakushin, V.; Krzton-Maziopa, A.; Pomjakushina, E. V.
  • Journal of Physics: Condensed Matter, Vol. 24, Issue 43
  • DOI: 10.1088/0953-8984/24/43/435701

Electronic structure of the BaFe 2 As 2 family of iron-pnictide superconductors
journal, July 2009


Band Narrowing and Mott Localization in Iron Oxychalcogenides La 2 O 2 Fe 2 O ( Se , S ) 2
journal, May 2010


Theory for superconductivity in (Tl,K)Fe x Se 2 as a doped Mott insulator
journal, June 2011


Unconventional Mott transition in K x Fe 2 y Se 2
journal, December 2011


Theory for superconductivity in (Tl,K)Fe$_x$Se$_2$ as a doped Mott insulator
text, January 2011


Large temperature dependence of the number of carriers in Co-doped BaFe2As2
text, January 2013


Works referencing / citing this record:

Iron-Based Chalcogenide Spin Ladder BaFe2X3 (X = Se,S)
journal, November 2019

  • Wu, Shan; Frandsen, Benjamin A.; Wang, Meng
  • Journal of Superconductivity and Novel Magnetism, Vol. 33, Issue 1
  • DOI: 10.1007/s10948-019-05304-4

High-temperature superconductivity in iron pnictides and chalcogenides
journal, March 2016


Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors
journal, May 2016


High Temperature Superconductivity in Iron Pnictides and Chalcogenides
text, January 2016