DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface Structure of Aerobically Oxidized Diamond Nanocrystals

Abstract

Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

Authors:
 [1];  [2];  [3];  [3];  [4];  [5];  [6];  [3];  [7]
  1. Columbia Univ., New York, NY (United States). Dept. of Chemistry; Columbia Univ., New York, NY (United States). Dept. of Electrical Engineering; Columbia Univ., New York, NY (United States). Dept. of Applied Mathematics and Applied Physics; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Electrical Engineering and Computer Science; Diamond Nanotechnologies Inc., Boston, MA (United States)
  2. Columbia Univ., New York, NY (United States). Energy Frontier Research Center
  3. Columbia Univ., New York, NY (United States). Dept. of Electrical Engineering; Columbia Univ., New York, NY (United States). Dept. of Applied Mathematics and Applied Physics; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Electrical Engineering and Computer Science
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  6. Columbia Univ., New York, NY (United States). Dept. of Electrical Engineering; Columbia Univ., New York, NY (United States). Dept. of Applied Mathematics and Applied Physics; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Electrical Engineering and Computer Science; Diamond Nanotechnologies Inc., Boston, MA (United States)
  7. Columbia Univ., New York, NY (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1229426
Report Number(s):
BNL-111502-2015-JA
Journal ID: ISSN 1932-7447
Grant/Contract Number:  
SC00112704; W911NF-12-1-0594; SC0001085; AC02-98CH10886; HDTRA1-11-1-0022; HR0011-14-C-0018; D14PC00121; 1R43MH102942-01
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 118; Journal Issue: 46; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Wolcott, Abraham, Schiros, Theanne, Trusheim, Matthew E., Chen, Edward H., Nordlund, Dennis, Diaz, Rosa E., Gaaton, Ophir, Englund, Dirk, and Owen, Jonathan S. Surface Structure of Aerobically Oxidized Diamond Nanocrystals. United States: N. p., 2014. Web. doi:10.1021/jp506992c.
Wolcott, Abraham, Schiros, Theanne, Trusheim, Matthew E., Chen, Edward H., Nordlund, Dennis, Diaz, Rosa E., Gaaton, Ophir, Englund, Dirk, & Owen, Jonathan S. Surface Structure of Aerobically Oxidized Diamond Nanocrystals. United States. https://doi.org/10.1021/jp506992c
Wolcott, Abraham, Schiros, Theanne, Trusheim, Matthew E., Chen, Edward H., Nordlund, Dennis, Diaz, Rosa E., Gaaton, Ophir, Englund, Dirk, and Owen, Jonathan S. Mon . "Surface Structure of Aerobically Oxidized Diamond Nanocrystals". United States. https://doi.org/10.1021/jp506992c. https://www.osti.gov/servlets/purl/1229426.
@article{osti_1229426,
title = {Surface Structure of Aerobically Oxidized Diamond Nanocrystals},
author = {Wolcott, Abraham and Schiros, Theanne and Trusheim, Matthew E. and Chen, Edward H. and Nordlund, Dennis and Diaz, Rosa E. and Gaaton, Ophir and Englund, Dirk and Owen, Jonathan S.},
abstractNote = {Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.},
doi = {10.1021/jp506992c},
journal = {Journal of Physical Chemistry. C},
number = 46,
volume = 118,
place = {United States},
year = {2014},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Inner-shell excitation of formaldehyde, acetaldehyde and acetone studied by electron impact
journal, January 1980


Fluorescent PLLA-nanodiamond composites for bone tissue engineering
journal, January 2011


High yield fabrication of fluorescent nanodiamonds
journal, May 2009


Oxidative etching of cleaved synthetic diamond {111} surfaces
journal, October 2001


NEXAFS studies of complex alcohols and carboxylic acids on the Si(111)(7×7) surface
journal, June 1987


Calculated X-ray Diffraction Data for Diamond Polytypes
journal, July 1992


Electric-field sensing using single diamond spins
journal, April 2011

  • Dolde, F.; Fedder, H.; Doherty, M. W.
  • Nature Physics, Vol. 7, Issue 6
  • DOI: 10.1038/nphys1969

Quantum register based on coupled electron spins in a room-temperature solid
journal, February 2010

  • Neumann, P.; Kolesov, R.; Naydenov, B.
  • Nature Physics, Vol. 6, Issue 4
  • DOI: 10.1038/nphys1536

Enormously High Concentrations of Fluorescent Nitrogen-Vacancy Centers Fabricated by Sintering of Detonation Nanodiamonds
journal, April 2011

  • Baranov, Pavel G.; Soltamova, Alexandra A.; Tolmachev, Daniel O.
  • Small, Vol. 7, Issue 11
  • DOI: 10.1002/smll.201001887

High-resolution electron-energy-loss spectroscopic study of epitaxially grown diamond (111) and (100) surfaces
journal, December 1993


Nanoscale magnetic imaging of a single electron spin under ambient conditions
journal, February 2013

  • Grinolds, M. S.; Hong, S.; Maletinsky, P.
  • Nature Physics, Vol. 9, Issue 4
  • DOI: 10.1038/nphys2543

Theoretical Strength and Cleavage of Diamond
journal, May 2000


Silica Encapsulation of Fluorescent Nanodiamonds for Colloidal Stability and Facile Surface Functionalization
journal, April 2013

  • Bumb, Ambika; Sarkar, Susanta K.; Billington, Neil
  • Journal of the American Chemical Society, Vol. 135, Issue 21
  • DOI: 10.1021/ja4016815

Interpretation of Raman spectra of disordered and amorphous carbon
journal, May 2000


Real-Time Background-Free Selective Imaging of Fluorescent Nanodiamonds in Vivo
journal, October 2012

  • Igarashi, Ryuji; Yoshinari, Yohsuke; Yokota, Hiroaki
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl302979d

Interaction of hydrogen and water with diamond (100): Infrared spectroscopy
journal, July 1993

  • Struck, Lisa M.; D’Evelyn, Mark P.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 11, Issue 4
  • DOI: 10.1116/1.578397

Stability, reconstruction, and electronic properties of diamond (100) and (111) surfaces
journal, December 1993


Size-reduction of nanodiamonds via air oxidation
journal, January 2012


The oscillator strengths for C1s and O1s excitation of some saturated and unsaturated organic alcohols, acids and esters
journal, January 1988


Bonding and hardness in nonhydrogenated carbon films with moderate sp3 content
journal, June 2000

  • Gago, R.; Jiménez, I.; Albella, J. M.
  • Journal of Applied Physics, Vol. 87, Issue 11
  • DOI: 10.1063/1.373514

Thermal hydrogenation of diamond surfaces studied by diffuse reflectance Fourier-transform infrared, temperature-programmed desorption and laser Raman spectroscopy
journal, January 1993

  • Ando, Toshihiro; Ishii, Motohiko; Kamo, Mutsukazu
  • Journal of the Chemical Society, Faraday Transactions, Vol. 89, Issue 11
  • DOI: 10.1039/ft9938901783

Wet Chemistry Route to Hydrophobic Blue Fluorescent Nanodiamond
journal, April 2009

  • Mochalin, Vadym N.; Gogotsi, Yury
  • Journal of the American Chemical Society, Vol. 131, Issue 13
  • DOI: 10.1021/ja9004514

Biotinylated Nanodiamond:  Simple and Efficient Functionalization of Detonation Diamond
journal, April 2008

  • Krueger, Anke; Stegk, Jochen; Liang, Yuejiang
  • Langmuir, Vol. 24, Issue 8
  • DOI: 10.1021/la703482v

Structural, electronic, and vibrational properties of diamond (100), (111), and (110) surfaces from ab initio calculations
journal, May 1995

  • Alfonso, Dominic R.; Drabold, David A.; Ulloa, Sergio E.
  • Physical Review B, Vol. 51, Issue 20
  • DOI: 10.1103/PhysRevB.51.14669

Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond
journal, September 2004

  • Ferrari, Andrea Carlo; Robertson, John
  • Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 362, Issue 1824
  • DOI: 10.1098/rsta.2004.1452

The NIST quantitative infrared database
journal, January 1999

  • Chu, P. M.; Guenther, F. R.; Rhoderick, G. C.
  • Journal of Research of the National Institute of Standards and Technology, Vol. 104, Issue 1
  • DOI: 10.6028/jres.104.004

Summary Abstract: Structural analysis of the diamond C(111)‐(2×1) reconstructed surface by low‐energy electron diffraction
journal, May 1988

  • Sowa, Erik C.; Kubiak, Glenn D.; Stulen, Richard H.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 6, Issue 3
  • DOI: 10.1116/1.575078

s p 3 content of mass-selected ion-beam-deposited carbon films determined by inelastic and elastic electron scattering
journal, December 1995


Study of Oxygen on the Three Low Index Diamond Surfaces by XPS
journal, April 2003


Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer) 3 Sample Volume
journal, January 2013


Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells
journal, May 2011

  • McGuinness, L. P.; Yan, Y.; Stacey, A.
  • Nature Nanotechnology, Vol. 6, Issue 6
  • DOI: 10.1038/nnano.2011.64

The properties and applications of nanodiamonds
journal, December 2011

  • Mochalin, Vadym N.; Shenderova, Olga; Ho, Dean
  • Nature Nanotechnology, Vol. 7, Issue 1
  • DOI: 10.1038/nnano.2011.209

Oxidation of the hydrogenated diamond (100) surface
journal, July 2000


Observation of a C- 1 s Core Exciton in Diamond
journal, April 1985


Raman spectroscopy in graphene
journal, April 2009


Functionality is Key: Recent Progress in the Surface Modification of Nanodiamond
journal, January 2012


Thermal oxidation of the hydrogenated diamond () surface
journal, January 2002


Ultralong spin coherence time in isotopically engineered diamond
journal, April 2009

  • Balasubramanian, Gopalakrishnan; Neumann, Philipp; Twitchen, Daniel
  • Nature Materials, Vol. 8, Issue 5
  • DOI: 10.1038/nmat2420

Phonon confinement effects in the Raman spectrum of nanodiamond
journal, August 2009


Mass production and dynamic imaging of fluorescent nanodiamonds
journal, April 2008

  • Chang, Yi-Ren; Lee, Hsu-Yang; Chen, Kowa
  • Nature Nanotechnology, Vol. 3, Issue 5
  • DOI: 10.1038/nnano.2008.99

Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders
journal, January 2009

  • Mochalin, Vadym; Osswald, Sebastian; Gogotsi, Yury
  • Chemistry of Materials, Vol. 21, Issue 2
  • DOI: 10.1021/cm802057q

Fluorescent Nanodiamonds Embedded in Biocompatible Translucent Shells
journal, February 2014


First-principle study on reactions of diamond (100) surfaces with hydrogen and methyl radicals
journal, December 2000


High-sensitivity diamond magnetometer with nanoscale resolution
journal, September 2008

  • Taylor, J. M.; Cappellaro, P.; Childress, L.
  • Nature Physics, Vol. 4, Issue 10
  • DOI: 10.1038/nphys1075

Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds
journal, January 2003


An extension of the mean free path approach to X-ray absorption spectroscopy
journal, June 2002

  • Zharnikov, M.; Frey, S.; Heister, K.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 124, Issue 1
  • DOI: 10.1016/S0368-2048(02)00004-X

Nanoscale imaging magnetometry with diamond spins under ambient conditions
journal, October 2008

  • Balasubramanian, Gopalakrishnan; Chan, I. Y.; Kolesov, Roman
  • Nature, Vol. 455, Issue 7213
  • DOI: 10.1038/nature07278

Nanoscale magnetic sensing with an individual electronic spin in diamond
journal, October 2008

  • Maze, J. R.; Stanwix, P. L.; Hodges, J. S.
  • Nature, Vol. 455, Issue 7213
  • DOI: 10.1038/nature07279

Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air
journal, September 2006

  • Osswald, Sebastian; Yushin, Gleb; Mochalin, Vadym
  • Journal of the American Chemical Society, Vol. 128, Issue 35, p. 11635-11642
  • DOI: 10.1021/ja063303n

Fluorescence and Spin Properties of Defects in Single Digit Nanodiamonds
journal, June 2009

  • Tisler, Julia; Balasubramanian, Gopalakrishnan; Naydenov, Boris
  • ACS Nano, Vol. 3, Issue 7
  • DOI: 10.1021/nn9003617

Diffuse reflectance Fourier-transform infrared study of the plasma-fluorination of diamond surfaces using a microwave discharge in CF4
journal, January 1993

  • Ando, Toshihiro; Tanaka, Junzo; Ishii, Motohiko
  • Journal of the Chemical Society, Faraday Transactions, Vol. 89, Issue 16
  • DOI: 10.1039/ft9938903105

Wide-Field Multispectral Super-Resolution Imaging Using Spin-Dependent Fluorescence in Nanodiamonds
journal, April 2013

  • Chen, Edward H.; Gaathon, Ophir; Trusheim, Matthew E.
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400346k

Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor
journal, January 2013


Characterization of nanocrystalline diamond films by core‐level photoabsorption
journal, March 1996

  • Gruen, D. M.; Krauss, A. R.; Zuiker, C. D.
  • Applied Physics Letters, Vol. 68, Issue 12
  • DOI: 10.1063/1.115677

C 1s excitation studies of diamond (111). II. Unoccupied surface states
journal, January 1986


Raman Spectrum of Graphene and Graphene Layers
journal, October 2006


New dimerized-chain model for the reconstruction of the diamond (111)-(2 × 1) surface
journal, March 1982


The Oxidation of Diamond:  The Geometry and Stretching Frequency of Carbonyl on the (100) Surface
journal, May 2003

  • John, Phillip; Polwart, Neil; Troupe, Clare E.
  • Journal of the American Chemical Society, Vol. 125, Issue 22
  • DOI: 10.1021/ja029586a

A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres
journal, April 2012

  • Maletinsky, P.; Hong, S.; Grinolds, M. S.
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.50

High yield fabrication of fluorescent nanodiamonds
journal, August 2009


Works referencing / citing this record:

Monitoring spin coherence of single nitrogen-vacancy centers in nanodiamonds during pH changes in aqueous buffer solutions
journal, January 2019

  • Fujiwara, Masazumi; Tsukahara, Ryuta; Sera, Yoshihiko
  • RSC Advances, Vol. 9, Issue 22
  • DOI: 10.1039/c9ra02282a

Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential
journal, March 2016

  • Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 15
  • DOI: 10.1073/pnas.1504451113

Polydopamine Encapsulation of Fluorescent Nanodiamonds for Biomedical Applications
journal, June 2018

  • Jung, Hak-Sung; Cho, Kyung-Jin; Seol, Yeonee
  • Advanced Functional Materials, Vol. 28, Issue 33
  • DOI: 10.1002/adfm.201801252

High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution
journal, December 2016

  • Stehlik, Stepan; Varga, Marian; Ledinsky, Martin
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep38419

Electron spin control of optically levitated nanodiamonds in vacuum
journal, July 2016

  • Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12250