DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

Abstract

A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

Authors:
 [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1872289
Alternate Identifier(s):
OSTI ID: 1228600
Report Number(s):
LLNL-JRNL-664016
Journal ID: ISSN 1070-664X; 782540; TRN: US2306860
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 4; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Plasma confinement; Leptons; Energy economics; Transition metals; Missing energy; Flow instabilities; Chemical elements; Fluid instabilities; Laser coupling; Geometrical optics

Citation Formats

Amendt, Peter, Ho, Darwin D., and Jones, Ogden S. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum. United States: N. p., 2015. Web. doi:10.1063/1.4918951.
Amendt, Peter, Ho, Darwin D., & Jones, Ogden S. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum. United States. https://doi.org/10.1063/1.4918951
Amendt, Peter, Ho, Darwin D., and Jones, Ogden S. Tue . "High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum". United States. https://doi.org/10.1063/1.4918951. https://www.osti.gov/servlets/purl/1872289.
@article{osti_1872289,
title = {High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum},
author = {Amendt, Peter and Ho, Darwin D. and Jones, Ogden S.},
abstractNote = {A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.},
doi = {10.1063/1.4918951},
journal = {Physics of Plasmas},
number = 4,
volume = 22,
place = {United States},
year = {Tue Apr 21 00:00:00 EDT 2015},
month = {Tue Apr 21 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Prolate-Spheroid (“Rugby-Shaped”) Hohlraum for Inertial Confinement Fusion
journal, August 2007


Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heating
journal, May 2013

  • Michel, P.; Rozmus, W.; Williams, E. A.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4802828

Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

High-density carbon ablator experiments on the National Ignition Facility
journal, May 2014

  • MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876611

Deceleration phase of inertial confinement fusion implosions
journal, May 2002

  • Betti, R.; Anderson, K.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459458

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
journal, May 2012

  • Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4718595

Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility
journal, May 2013

  • Clark, D. S.; Hinkel, D. E.; Eder, D. C.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4802194

Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration
journal, November 2014

  • Amendt, Peter; Ross, J. Steven; Milovich, Jose L.
  • Physics of Plasmas, Vol. 21, Issue 11
  • DOI: 10.1063/1.4901195

Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

The effect of laser pulse shape variations on the adiabat of NIF capsule implosions
journal, May 2013

  • Robey, H. F.; MacGowan, B. J.; Landen, O. L.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4807331

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


Observation of a Reflected Shock in an Indirectly Driven Spherical Implosion at the National Ignition Facility
journal, June 2014


Exploration of the Transition from the Hydrodynamiclike to the Strongly Kinetic Regime in Shock-Driven Implosions
journal, May 2014


Implosion dynamics measurements at the National Ignition Facility
journal, December 2012

  • Hicks, D. G.; Meezan, N. B.; Dewald, E. L.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4769268

Three‐dimensional simulations of Nova high growth factor capsule implosion experiments
journal, May 1996

  • Marinak, M. M.; Tipton, R. E.; Landen, O. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872004

The velocity campaign for ignition on NIF
journal, May 2012

  • Callahan, D. A.; Meezan, N. B.; Glenzer, S. H.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3694840

Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility
journal, May 2014

  • Town, R. P. J.; Bradley, D. K.; Kritcher, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876609

Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation
journal, April 2012

  • Robey, H. F.; Boehly, T. R.; Celliers, P. M.
  • Physics of Plasmas, Vol. 19, Issue 4
  • DOI: 10.1063/1.3694122

Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums
journal, May 2007

  • Amendt, Peter; Cerjan, C.; Hamza, A.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2716406

Novel Characterization of Capsule X-Ray Drive at the National Ignition Facility
journal, March 2014


Works referencing / citing this record:

The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility
journal, May 2017

  • Hall, G. N.; Jones, O. S.; Strozzi, D. J.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983142

Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility
journal, May 2017

  • Simakov, A. N.; Wilson, D. C.; Yi, S. A.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983141

Hybrid particle-in-cell simulations of laser-driven plasma interpenetration, heating, and entrainment
journal, November 2019

  • Higginson, D. P.; Amendt, P.; Meezan, N.
  • Physics of Plasmas, Vol. 26, Issue 11
  • DOI: 10.1063/1.5110512

Preliminary study on a tetrahedral hohlraum with four half-cylindrical cavities for indirectly driven inertial confinement fusion
journal, March 2017