DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010

Abstract

Here, four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules inmore » urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (≈ 3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35%, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(±3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μg m–3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr–1 of SOA globally, or 17% of global SOA, one-third of which is likely to be non-fossil.« less

Authors:
; ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1228314
Alternate Identifier(s):
OSTI ID: 1457376
Grant/Contract Number:  
SC0006711; SC0006035; SC0011105
Resource Type:
Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online) Journal Volume: 15 Journal Issue: 10; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S., Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prévôt, A. S. H., Szidat, S., Kleindienst, T. E., Offenberg, J. H., Ma, P. K., and Jimenez, J. L. Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Germany: N. p., 2015. Web. doi:10.5194/acp-15-5773-2015.
Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S., Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prévôt, A. S. H., Szidat, S., Kleindienst, T. E., Offenberg, J. H., Ma, P. K., & Jimenez, J. L. Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Germany. https://doi.org/10.5194/acp-15-5773-2015
Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S., Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prévôt, A. S. H., Szidat, S., Kleindienst, T. E., Offenberg, J. H., Ma, P. K., and Jimenez, J. L. Tue . "Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010". Germany. https://doi.org/10.5194/acp-15-5773-2015.
@article{osti_1228314,
title = {Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010},
author = {Hayes, P. L. and Carlton, A. G. and Baker, K. R. and Ahmadov, R. and Washenfelder, R. A. and Alvarez, S. and Rappenglück, B. and Gilman, J. B. and Kuster, W. C. and de Gouw, J. A. and Zotter, P. and Prévôt, A. S. H. and Szidat, S. and Kleindienst, T. E. and Offenberg, J. H. and Ma, P. K. and Jimenez, J. L.},
abstractNote = {Here, four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (≈ 3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35%, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(±3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μg m–3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr–1 of SOA globally, or 17% of global SOA, one-third of which is likely to be non-fossil.},
doi = {10.5194/acp-15-5773-2015},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 10,
volume = 15,
place = {Germany},
year = {Tue May 26 00:00:00 EDT 2015},
month = {Tue May 26 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/acp-15-5773-2015

Citation Metrics:
Cited by: 123 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006: A VOLATILITY BASIS SET MODEL FOR SOA
journal, March 2012

  • Ahmadov, R.; McKeen, S. A.; Robinson, A. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D6
  • DOI: 10.1029/2011JD016831

The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010: GLYOXAL BUDGET FOR LOS ANGELES
journal, October 2011

  • Washenfelder, R. A.; Young, C. J.; Brown, S. S.
  • Journal of Geophysical Research: Atmospheres, Vol. 116, Issue D21
  • DOI: 10.1029/2011JD016314

Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior
journal, January 2011


Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry
journal, November 2007

  • Aiken, Allison C.; DeCarlo, Peter F.; Jimenez, Jose L.
  • Analytical Chemistry, Vol. 79, Issue 21
  • DOI: 10.1021/ac071150w

Acute Respiratory Effects of Particulate Air Pollution
journal, May 1994


Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation
journal, January 2010


Source Apportionment of Molecular Markers and Organic Aerosol. 3. Food Cooking Emissions
journal, December 2006

  • Robinson, Allen L.; Subramanian, R.; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 40, Issue 24
  • DOI: 10.1021/es060781p

Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS
journal, January 2014

  • Yatavelli, R. L. N.; Stark, H.; Thompson, S. L.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 3
  • DOI: 10.5194/acp-14-1527-2014

Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign: AEROSOL COMPOSITION IN PASADENA
journal, August 2013

  • Hayes, P. L.; Ortega, A. M.; Cubison, M. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 16
  • DOI: 10.1002/jgrd.50530

Visibility: Science and Regulation
journal, June 2002


Integrated approaches to modeling the organic and inorganic atmospheric aerosol components
journal, November 2003


Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions
journal, October 2012

  • Gentner, D. R.; Isaacman, G.; Worton, D. R.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 45
  • DOI: 10.1073/pnas.1212272109

Organic Aerosols in the Earth’s Atmosphere
journal, October 2009

  • De Gouw, Joost; Jimenez, Jose L.
  • Environmental Science & Technology, Vol. 43, Issue 20
  • DOI: 10.1021/es9006004

Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data
journal, March 2012


Aerosol mass spectrometer constraint on the global secondary organic aerosol budget
journal, January 2011

  • Spracklen, D. V.; Jimenez, J. L.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12109-2011

Source apportionment of fine organic aerosols in Beijing
journal, January 2009


Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3
journal, January 2013

  • Ortega, A. M.; Day, D. A.; Cubison, M. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 22
  • DOI: 10.5194/acp-13-11551-2013

Effects of mixing on evolution of hydrocarbon ratios in the troposphere: MIXING EFFECTS ON NMHC RATIO EVOLUTION
journal, March 2007

  • Parrish, D. D.; Stohl, A.; Forster, C.
  • Journal of Geophysical Research: Atmospheres, Vol. 112, Issue D10
  • DOI: 10.1029/2006JD007583

Single-particle mass spectrometry of tropospheric aerosol particles: TROPOSPHERIC AEROSOL PARTICLES
journal, September 2006

  • Murphy, D. M.; Cziczo, D. J.; Froyd, K. D.
  • Journal of Geophysical Research: Atmospheres, Vol. 111, Issue D23
  • DOI: 10.1029/2006JD007340

Intermediate-Volatility Organic Compounds: A Large Source of Secondary Organic Aerosol
journal, November 2014

  • Zhao, Yunliang; Hennigan, Christopher J.; May, Andrew A.
  • Environmental Science & Technology, Vol. 48, Issue 23
  • DOI: 10.1021/es5035188

Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States
journal, July 2014

  • Jathar, S. H.; Gordon, T. D.; Hennigan, C. J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 29
  • DOI: 10.1073/pnas.1323740111

The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US
journal, January 2015

  • Knote, C.; Hodzic, A.; Jimenez, J. L.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-1-2015

High Natural Aerosol Loading over Boreal Forests
journal, April 2006


Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City
journal, January 2009

  • Dzepina, K.; Volkamer, R. M.; Madronich, S.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 15
  • DOI: 10.5194/acp-9-5681-2009

Nonequilibrium atmospheric secondary organic aerosol formation and growth
journal, January 2012

  • Perraud, V.; Bruns, E. A.; Ezell, M. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 8
  • DOI: 10.1073/pnas.1119909109

Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon
journal, August 2012


Photochemical Modeling of the Ozark Isoprene Volcano: MEGAN, BEIS, and Their Impacts on Air Quality Predictions
journal, May 2011

  • Carlton, Annmarie G.; Baker, Kirk R.
  • Environmental Science & Technology, Vol. 45, Issue 10
  • DOI: 10.1021/es200050x

Measurement of Emissions from Air Pollution Sources. 4. C 1 −C 27 Organic Compounds from Cooking with Seed Oils
journal, February 2002

  • Schauer, James J.; Kleeman, Michael J.; Cass, Glen R.
  • Environmental Science & Technology, Vol. 36, Issue 4
  • DOI: 10.1021/es002053m

The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model
journal, January 2014

  • Knote, C.; Hodzic, A.; Jimenez, J. L.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 12
  • DOI: 10.5194/acp-14-6213-2014

Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City?
journal, January 2010

  • Hodzic, A.; Jimenez, J. L.; Prévôt, A. S. H.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 22
  • DOI: 10.5194/acp-10-10997-2010

Evaluation of surface and upper air fine scale WRF meteorological modeling of the May and June 2010 CalNex period in California
journal, December 2013


Secondary Organic Aerosol Formation from Isoprene Photooxidation
journal, March 2006

  • Kroll, Jesse H.; Ng, Nga L.; Murphy, Shane M.
  • Environmental Science & Technology, Vol. 40, Issue 6
  • DOI: 10.1021/es0524301

Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set
journal, January 2011

  • Murphy, B. N.; Donahue, N. M.; Fountoukis, C.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 15
  • DOI: 10.5194/acp-11-7859-2011

Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic or Hydroxyl Groups. 2. Organic Tracer Compounds from Monoterpenes
journal, August 2005

  • Jaoui, M.; Kleindienst, T. E.; Lewandowski, M.
  • Environmental Science & Technology, Vol. 39, Issue 15
  • DOI: 10.1021/es048111b

Measurement of Emissions from Air Pollution Sources. 1. C 1 through C 29 Organic Compounds from Meat Charbroiling
journal, May 1999

  • Schauer, James J.; Kleeman, Michael J.; Cass, Glen R.
  • Environmental Science & Technology, Vol. 33, Issue 10
  • DOI: 10.1021/es980076j

Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected
journal, January 2006

  • Volkamer, Rainer; Jimenez, Jose L.; San Martini, Federico
  • Geophysical Research Letters, Vol. 33, Issue 17
  • DOI: 10.1029/2006GL026899

Secondary organic aerosol yields of 12-carbon alkanes
journal, January 2014

  • Loza, C. L.; Craven, J. S.; Yee, L. D.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 3
  • DOI: 10.5194/acp-14-1423-2014

Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications
journal, January 2015

  • Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-253-2015

Climate Change 2013 – The Physical Science Basis
book, March 2014


Isoprene Forms Secondary Organic Aerosol through Cloud Processing:  Model Simulations
journal, June 2005

  • Lim, Ho-Jin; Carlton, Annmarie G.; Turpin, Barbara J.
  • Environmental Science & Technology, Vol. 39, Issue 12
  • DOI: 10.1021/es048039h

Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions: TRENDS IN VOCS IN LOS ANGELES
journal, September 2012

  • Warneke, Carsten; de Gouw, Joost A.; Holloway, John S.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D21
  • DOI: 10.1029/2012JD017899

Viscosity of  -pinene secondary organic material and implications for particle growth and reactivity
journal, April 2013

  • Renbaum-Wolff, L.; Grayson, J. W.; Bateman, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 20
  • DOI: 10.1073/pnas.1219548110

Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution
journal, January 2009

  • Grieshop, A. P.; Logue, J. M.; Donahue, N. M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 4
  • DOI: 10.5194/acp-9-1263-2009

Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set
journal, January 2013

  • Donahue, N. M.; Chuang, W.; Epstein, S. A.
  • Environmental Chemistry, Vol. 10, Issue 3
  • DOI: 10.1071/EN13022

Increasing atmospheric burden of ethanol in the United States: INCREASING ATMOSPHERIC BURDEN OF ETHANOL
journal, August 2012

  • de Gouw, J. A.; Gilman, J. B.; Borbon, A.
  • Geophysical Research Letters, Vol. 39, Issue 15
  • DOI: 10.1029/2012GL052109

Development of the SAPRC-07 chemical mechanism
journal, December 2010


Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics
journal, April 2006

  • Donahue, N. M.; Robinson, A. L.; Stanier, C. O.
  • Environmental Science & Technology, Vol. 40, Issue 8
  • DOI: 10.1021/es052297c

The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol
journal, January 2011

  • Hersey, S. P.; Craven, J. S.; Schilling, K. A.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 15
  • DOI: 10.5194/acp-11-7417-2011

Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging
journal, March 2007


Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area
journal, January 2010

  • Tsimpidi, A. P.; Karydis, V. A.; Zavala, M.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 2
  • DOI: 10.5194/acp-10-525-2010

Modeling the Multiday Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006
journal, April 2011

  • Dzepina, Katja; Cappa, Christopher D.; Volkamer, Rainer M.
  • Environmental Science & Technology, Vol. 45, Issue 8
  • DOI: 10.1021/es103186f

On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk water-soluble organic carbon: WSOC PARTITIONING IN LA AND ATLANTA
journal, September 2012

  • Zhang, Xiaolu; Liu, Jiumeng; Parker, Eric T.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D21
  • DOI: 10.1029/2012JD017908

Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin
journal, January 2009

  • Chen, Q.; Farmer, D. K.; Schneider, J.
  • Geophysical Research Letters, Vol. 36, Issue 20
  • DOI: 10.1029/2009GL039880

A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol
journal, January 2007

  • Volkamer, Rainer; San Martini, Federico; Molina, Luisa T.
  • Geophysical Research Letters, Vol. 34, Issue 19
  • DOI: 10.1029/2007GL030752

Is Benzene a Precursor for Secondary Organic Aerosol?
journal, February 2005

  • Martín-Reviejo, Montserrat; Wirtz, Klaus
  • Environmental Science & Technology, Vol. 39, Issue 4
  • DOI: 10.1021/es049802a

Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China
journal, January 2013


Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests
journal, January 2010

  • Slowik, J. G.; Stroud, C.; Bottenheim, J. W.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 6
  • DOI: 10.5194/acp-10-2825-2010

CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is Included: Comparisons of Organic Carbon Predictions with Measurements
journal, December 2008

  • Carlton, Annmarie G.; Turpin, Barbara J.; Altieri, Katye E.
  • Environmental Science & Technology, Vol. 42, Issue 23
  • DOI: 10.1021/es801192n

Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass: GASOLINE DOMINATES SOA FORMATION
journal, March 2012

  • Bahreini, R.; Middlebrook, A. M.; de Gouw, J. A.
  • Geophysical Research Letters, Vol. 39, Issue 6
  • DOI: 10.1029/2011GL050718

Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements
journal, August 2010


Impact of regional transport on the anthropogenic and biogenic secondary organic aerosols in the Los Angeles Basin
journal, February 2015


A global perspective on aerosol from low-volatility organic compounds
journal, January 2010


The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study: CalNex 2010 FIELD PROJECT OVERVIEW
journal, June 2013

  • Ryerson, T. B.; Andrews, A. E.; Angevine, W. M.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 11
  • DOI: 10.1002/jgrd.50331

Determination of urban volatile organic compound emission ratios and comparison with an emissions database: URBAN VOC EMISSION RATIOS
journal, May 2007

  • Warneke, C.; McKeen, S. A.; de Gouw, J. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 112, Issue D10
  • DOI: 10.1029/2006JD007930

The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides
journal, January 2012

  • Kleindienst, T. E.; Jaoui, M.; Lewandowski, M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 18
  • DOI: 10.5194/acp-12-8711-2012

Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models
journal, January 2011


Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol
journal, April 2014

  • Zhang, X.; Cappa, C. D.; Jathar, S. H.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1404727111

Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO
journal, January 2010

  • DeCarlo, P. F.; Ulbrich, I. M.; Crounse, J.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 12
  • DOI: 10.5194/acp-10-5257-2010

Quantitative estimates of the volatility of ambient organic aerosol
journal, January 2010


Secondary Organic Aerosol Formation from Photo-Oxidation of Unburned Fuel: Experimental Results and Implications for Aerosol Formation from Combustion Emissions
journal, November 2013

  • Jathar, Shantanu H.; Miracolo, Marissa A.; Tkacik, Daniel S.
  • Environmental Science & Technology, Vol. 47, Issue 22
  • DOI: 10.1021/es403445q

Model Representation of Secondary Organic Aerosol in CMAQv4.7
journal, November 2010

  • Carlton, Annmarie G.; Bhave, Prakash V.; Napelenok, Sergey L.
  • Environmental Science & Technology, Vol. 44, Issue 22
  • DOI: 10.1021/es100636q

Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex: Radiocarbon diurnal profiles in L.A.
journal, June 2014

  • Zotter, Peter; El-Haddad, Imad; Zhang, Yanlin
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 11
  • DOI: 10.1002/2013JD021114

O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry
journal, June 2008

  • Aiken, Allison C.; DeCarlo, Peter F.; Kroll, Jesse H.
  • Environmental Science & Technology, Vol. 42, Issue 12
  • DOI: 10.1021/es703009q

Aircraft observations of aerosol composition and ageing in New England and Mid-Atlantic States during the summer 2002 New England Air Quality Study field campaign
journal, January 2007

  • Kleinman, Lawrence I.; Daum, Peter H.; Lee, Yin-Nan
  • Journal of Geophysical Research, Vol. 112, Issue D9
  • DOI: 10.1029/2006JD007786

Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols
journal, January 2009

  • Hodzic, A.; Jimenez, J. L.; Madronich, S.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 18
  • DOI: 10.5194/acp-9-6949-2009

Satellite observations cap the atmospheric organic aerosol budget: FRONTIER
journal, December 2010

  • Heald, Colette L.; Ridley, David A.; Kreidenweis, Sonia M.
  • Geophysical Research Letters, Vol. 37, Issue 24
  • DOI: 10.1029/2010GL045095

Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation
journal, January 2014

  • Ensberg, J. J.; Hayes, P. L.; Jimenez, J. L.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 5
  • DOI: 10.5194/acp-14-2383-2014

Absence of 14 C in PM2.5 Emissions from Gasohol Combustion in Small Engines
journal, August 2006

  • Lewis, Charles W.; Volckens, John; Braddock, James N.
  • Aerosol Science and Technology, Vol. 40, Issue 9
  • DOI: 10.1080/02786820600784315

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Determination of Volatility Distributions of Primary Organic Aerosol Emissions from Internal Combustion Engines Using Thermal Desorption Gas Chromatography Mass Spectrometry
journal, October 2012

  • Presto, Albert A.; Hennigan, Christopher J.; Nguyen, Ngoc T.
  • Aerosol Science and Technology, Vol. 46, Issue 10
  • DOI: 10.1080/02786826.2012.700430

3-methyl-1,2,3-butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic aerosol
journal, January 2007

  • Szmigielski, Rafal; Surratt, Jason D.; Gómez-González, Yadian
  • Geophysical Research Letters, Vol. 34, Issue 24
  • DOI: 10.1029/2007GL031338

Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine
journal, July 2011


Estimated contributions of primary and secondary organic aerosol from fossil fuel combustion during the CalNex and Cal-Mex campaigns
journal, May 2014


Secondary Organic Aerosol Formation from Acetylene (C 2 H 2 ): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase
journal, January 2009

  • Volkamer, R.; Ziemann, P. J.; Molina, M. J.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 6
  • DOI: 10.5194/acp-9-1907-2009

Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1)
journal, October 2008

  • Docherty, Kenneth S.; Stone, Elizabeth A.; Ulbrich, Ingrid M.
  • Environmental Science & Technology, Vol. 42, Issue 20
  • DOI: 10.1021/es8008166

Fine-scale simulation of ammonium and nitrate over the South Coast Air Basin and San Joaquin Valley of California during CalNex-2010
journal, March 2014

  • Kelly, James T.; Baker, Kirk R.; Nowak, John B.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 6
  • DOI: 10.1002/2013JD021290

Evaluation of several PM 2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study : PM
journal, March 2007

  • McKeen, S.; Chung, S. H.; Wilczak, J.
  • Journal of Geophysical Research: Atmospheres, Vol. 112, Issue D10
  • DOI: 10.1029/2006JD007608

Hydroxydicarboxylic Acids:  Markers for Secondary Organic Aerosol from the Photooxidation of α-Pinene
journal, March 2007

  • Claeys, Magda; Szmigielski, Rafal; Kourtchev, Ivan
  • Environmental Science & Technology, Vol. 41, Issue 5
  • DOI: 10.1021/es0620181

Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model
journal, January 2011


Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data
journal, January 2012

  • Mohr, C.; DeCarlo, P. F.; Heringa, M. F.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 4
  • DOI: 10.5194/acp-12-1649-2012

Secondary organic aerosol formation from <i>m</i>-xylene, toluene, and benzene
journal, January 2007

  • Ng, N. L.; Kroll, J. H.; Chan, A. W. H.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 14
  • DOI: 10.5194/acp-7-3909-2007

Atmospheric Degradation of Volatile Organic Compounds
journal, December 2003

  • Atkinson, Roger; Arey, Janet
  • Chemical Reviews, Vol. 103, Issue 12
  • DOI: 10.1021/cr0206420

Contribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide levels in two areas of the United States: PHOTOCHEMICAL CO GENERATION
journal, April 2007

  • Griffin, Robert J.; Chen, Jianjun; Carmody, Kevin
  • Journal of Geophysical Research: Atmospheres, Vol. 112, Issue D10
  • DOI: 10.1029/2006JD007602