DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

Abstract

Passivated contacts (poly-Si/SiOx/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF2), the ion implantation dose (5 × 1014 cm–2 to 1 × 1016 cm–2), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iVoc) of 725 and 720 mV, respectively. For p-type passivated contacts, BF2 implantations into intrinsic a-Si yield well passivated contacts and allow for iVoc of 690 mV, whereas implanted B gives poor passivation with iVoc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved Voc of 690 mV and fill factor (FF) of 79.1%, selective hole contactsmore » realized by BF2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Lastly, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with Voc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.« less

Authors:
 [1];  [2];  [2];  [3];  [3]; ORCiD logo [3];  [3];  [2];  [2]
  1. Fraunhofer Inst. for Solar Energy Systems (ISE), Freiburg (Germany); National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Fraunhofer Inst. for Solar Energy Systems (ISE), Freiburg (Germany)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE SunShot Program to Advance Solar Cell Efficiency II (FPACE); German Federal Ministry for Economic Affairs and Energy
OSTI Identifier:
1235416
Alternate Identifier(s):
OSTI ID: 1226875
Report Number(s):
NREL/JA-5J00-65649
Journal ID: ISSN 0021-8979; JAPIAU
Grant/Contract Number:  
AC36-08GO28308; EE0006336
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 118; Journal Issue: 20; Related Information: Journal of Applied Physics; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; amorphous semiconductors; passivation; ion implantation; silicon doping; silicon solar cells; semiconductor structures; oxides; Ohmic contacts; semiconductor materials; ion sources; chemical vapor deposition; electrical properties and parameters; solar cells; annealing

Citation Formats

Reichel, Christian, Feldmann, Frank, Müller, Ralph, Reedy, Robert C., Lee, Benjamin G., Young, David L., Stradins, Paul, Hermle, Martin, and Glunz, Stefan W. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells. United States: N. p., 2015. Web. doi:10.1063/1.4936223.
Reichel, Christian, Feldmann, Frank, Müller, Ralph, Reedy, Robert C., Lee, Benjamin G., Young, David L., Stradins, Paul, Hermle, Martin, & Glunz, Stefan W. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells. United States. https://doi.org/10.1063/1.4936223
Reichel, Christian, Feldmann, Frank, Müller, Ralph, Reedy, Robert C., Lee, Benjamin G., Young, David L., Stradins, Paul, Hermle, Martin, and Glunz, Stefan W. Mon . "Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells". United States. https://doi.org/10.1063/1.4936223. https://www.osti.gov/servlets/purl/1235416.
@article{osti_1235416,
title = {Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells},
author = {Reichel, Christian and Feldmann, Frank and Müller, Ralph and Reedy, Robert C. and Lee, Benjamin G. and Young, David L. and Stradins, Paul and Hermle, Martin and Glunz, Stefan W.},
abstractNote = {Passivated contacts (poly-Si/SiOx/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF2), the ion implantation dose (5 × 1014 cm–2 to 1 × 1016 cm–2), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iVoc) of 725 and 720 mV, respectively. For p-type passivated contacts, BF2 implantations into intrinsic a-Si yield well passivated contacts and allow for iVoc of 690 mV, whereas implanted B gives poor passivation with iVoc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved Voc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Lastly, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with Voc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.},
doi = {10.1063/1.4936223},
journal = {Journal of Applied Physics},
number = 20,
volume = 118,
place = {United States},
year = {Mon Nov 23 00:00:00 EST 2015},
month = {Mon Nov 23 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-performance transistors with arsenic-implanted polysil emitters
journal, August 1976


A silicon heterojunction transistor
journal, October 1979

  • Matsushita, T.; Oh‐uchi, N.; Hayashi, H.
  • Applied Physics Letters, Vol. 35, Issue 7
  • DOI: 10.1063/1.91174

A 720 mV open circuit voltage SiO x : c ‐Si:SiO x double heterostructure solar cell
journal, December 1985

  • Yablonovitch, E.; Gmitter, T.; Swanson, R. M.
  • Applied Physics Letters, Vol. 47, Issue 11
  • DOI: 10.1063/1.96331

A polysilicon emitter solar cell
journal, December 1985


Heavily doped polysilicon-contact solar cells
journal, July 1985

  • Lindholm, F. A.; Neugroschel, A.; Arienzo, M.
  • IEEE Electron Device Letters, Vol. 6, Issue 7
  • DOI: 10.1109/EDL.1985.26155

Polysilicon emitters for silicon concentrator solar cells
conference, January 1990


Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell
journal, November 2014


Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics
journal, January 2014


Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions
journal, December 2014


Interdigitated Back Passivated Contact (IBPC) Solar Cells Formed by Ion Implantation
journal, January 2016


Carrier-selective contacts for Si solar cells
journal, May 2014

  • Feldmann, F.; Simon, M.; Bivour, M.
  • Applied Physics Letters, Vol. 104, Issue 18
  • DOI: 10.1063/1.4875904

Ion implantation into amorphous Si layers to form carrier-selective contacts for Si solar cells: Ion implantation into amorphous Si layers to form carrier-selective contacts for Si solar cells
journal, August 2014

  • Feldmann, Frank; Müller, Ralph; Reichel, Christian
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 08, Issue 09
  • DOI: 10.1002/pssr.201409312

Phosphorus-diffused polysilicon contacts for solar cells
journal, November 2015


Effects of fluorine in silicon solar cells with polysilicon contacts
journal, May 1998


Ion Implantation for Poly-Si Passivated Back-Junction Back-Contacted Solar Cells
journal, March 2015


Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density
journal, December 2003

  • Kobayashi Asuha, Hikaru; Maida, Osamu; Takahashi, Masao
  • Journal of Applied Physics, Vol. 94, Issue 11
  • DOI: 10.1063/1.1621720

Simple Cleaning and Conditioning of Silicon Surfaces with UV/Ozone Sources
journal, January 2014


Efficient carrier-selective p- and n-contacts for Si solar cells
journal, December 2014


Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering
journal, October 2012

  • Demaurex, Bénédicte; De Wolf, Stefaan; Descoeudres, Antoine
  • Applied Physics Letters, Vol. 101, Issue 17
  • DOI: 10.1063/1.4764529

Analysis and optimization approach for the doped amorphous layers of silicon heterojunction solar cells
journal, November 2011

  • Pysch, Damian; Meinhard, Christoph; Harder, Nils-Peter
  • Journal of Applied Physics, Vol. 110, Issue 9
  • DOI: 10.1063/1.3650255

Gate Oxide Degradation in the Polysilicon Doping/Activation Process
journal, January 1987

  • Flowers, Derv
  • Journal of The Electrochemical Society, Vol. 134, Issue 3
  • DOI: 10.1149/1.2100534

The effect of fluorine in silicon dioxide gate dielectrics
journal, May 1989

  • Wright, P. J.; Saraswat, K. C.
  • IEEE Transactions on Electron Devices, Vol. 36, Issue 5
  • DOI: 10.1109/16.299669

A comprehensive study on p/sup +/ polysilicon-gate MOSFET's instability with fluorine incorporation
journal, November 1990

  • Sung, J. J.; Lu, C. -Y.
  • IEEE Transactions on Electron Devices, Vol. 37, Issue 11
  • DOI: 10.1109/16.62294

Boron, fluorine, and carrier profiles for B and BF 2 implants into crystalline and amorphous Si
journal, December 1983

  • Wilson, R. G.
  • Journal of Applied Physics, Vol. 54, Issue 12
  • DOI: 10.1063/1.331993

Effect of fluorine on the diffusion of boron in ion implanted Si
journal, August 1998

  • Downey, Daniel F.; Chow, Judy W.; Ishida, Emi
  • Applied Physics Letters, Vol. 73, Issue 9
  • DOI: 10.1063/1.122146

Fluorine in Si: Native-defect complexes and the suppression of impurity diffusion
journal, July 2005

  • Lopez, Giorgia M.; Fiorentini, Vincenzo; Impellizzeri, Giuliana
  • Physical Review B, Vol. 72, Issue 4
  • DOI: 10.1103/PhysRevB.72.045219

Anomalous diffusion of fluorine in silicon
journal, September 1992

  • Jeng, S. ‐P.; Ma, T. ‐P.; Canteri, R.
  • Applied Physics Letters, Vol. 61, Issue 11
  • DOI: 10.1063/1.107575

A comprehensive study of suppression of boron penetration by amorphous-Si gate in P/sup +/-gate PMOS devices
journal, January 1995

  • Chih-Yung Lin,
  • IEEE Transactions on Electron Devices, Vol. 42, Issue 12
  • DOI: 10.1109/16.477764

Epitaxial regrowth of n + and p + polycrystalline silicon layers given single and double diffusions
journal, October 1992

  • Williams, J. D.; Ashburn, P.
  • Journal of Applied Physics, Vol. 72, Issue 7
  • DOI: 10.1063/1.351480

Recrystallization of implanted amorphous silicon layers. II. Migration of fluorine in BF + 2 ‐implanted silicon
journal, January 1979

  • Tsai, M. Y.; Day, D. S.; Streetman, B. G.
  • Journal of Applied Physics, Vol. 50, Issue 1
  • DOI: 10.1063/1.325689

Doping characteristics of BF/sub 2//sup +/ implants in >100< and >111< silicon
journal, January 2001

  • Drobny, V. F.; Rubalcava, J.
  • IEEE Transactions on Electron Devices, Vol. 48, Issue 8
  • DOI: 10.1109/16.936586

Analysis of the improved contact resistance in metal-p+ silicon Schottky barriers using the BF2/B mixed implantation
journal, August 1999

  • Lee, Jung-Ho; Yeo, In-Seok; Lee, Jeong-Youb
  • Applied Physics Letters, Vol. 75, Issue 9
  • DOI: 10.1063/1.124669

Works referencing / citing this record:

Implantation‐based passivating contacts for crystalline silicon front/rear contacted solar cells
journal, January 2020

  • Limodio, Gianluca; Yang, Guangtao; De Groot, Yvar
  • Progress in Photovoltaics: Research and Applications, Vol. 28, Issue 5
  • DOI: 10.1002/pip.3250

Dielectric surface passivation for silicon solar cells: A review
journal, June 2017

  • Bonilla, Ruy S.; Hoex, Bram; Hamer, Phillip
  • physica status solidi (a), Vol. 214, Issue 7
  • DOI: 10.1002/pssa.201700293

A passivating contact for silicon solar cells formed during a single firing thermal annealing
journal, September 2018


Hydrogen passivation of poly-Si/SiO x contacts for Si solar cells using Al 2 O 3 studied with deuterium
journal, May 2018

  • Schnabel, Manuel; van de Loo, Bas W. H.; Nemeth, William
  • Applied Physics Letters, Vol. 112, Issue 20
  • DOI: 10.1063/1.5031118