DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impurities in a non-axisymmetric plasma. Transport and effect on bootstrap current

Abstract

Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014) 042503] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/nu-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Zeff of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4];  [3]
  1. Chalmers Univ. of Technology, Goteborg (Sweden); Max-Planck-Institut fur Plasmaphysik, Greifswald (Germany)
  2. Univ. of Maryland, College Park, MD (United States)
  3. Max-Planck-Institut fur Plasmaphysik, Greifswald (Germany)
  4. Max-Planck-Institut fur Plasmaphysik, Greifswald (Germany); Institute of Engineering Thermodynamics, Stuttgart (Germany)
Publication Date:
Research Org.:
Univ. of Maryland, College Park, MD (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1227103
Alternate Identifier(s):
OSTI ID: 1226677
Grant/Contract Number:  
FG02-93ER54197; AC02-05CH11231; DEFC0208ER54964; DEFG0293ER54197
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 11; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Stellarators; impurities; neoclassical transport; electric fields; plasma impurities; Fokker Planck equation; plasma transport properties

Citation Formats

Mollén, A., Landreman, M., Smith, H. M., Braun, S., and Helander, P. Impurities in a non-axisymmetric plasma. Transport and effect on bootstrap current. United States: N. p., 2015. Web. doi:10.1063/1.4935901.
Mollén, A., Landreman, M., Smith, H. M., Braun, S., & Helander, P. Impurities in a non-axisymmetric plasma. Transport and effect on bootstrap current. United States. https://doi.org/10.1063/1.4935901
Mollén, A., Landreman, M., Smith, H. M., Braun, S., and Helander, P. Fri . "Impurities in a non-axisymmetric plasma. Transport and effect on bootstrap current". United States. https://doi.org/10.1063/1.4935901. https://www.osti.gov/servlets/purl/1227103.
@article{osti_1227103,
title = {Impurities in a non-axisymmetric plasma. Transport and effect on bootstrap current},
author = {Mollén, A. and Landreman, M. and Smith, H. M. and Braun, S. and Helander, P.},
abstractNote = {Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014) 042503] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/nu-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Zeff of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.},
doi = {10.1063/1.4935901},
journal = {Physics of Plasmas},
number = 11,
volume = 22,
place = {United States},
year = {Fri Nov 20 00:00:00 EST 2015},
month = {Fri Nov 20 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Stellarator and tokamak plasmas: a comparison
journal, November 2012


Theory of plasma confinement in non-axisymmetric magnetic fields
journal, July 2014


On impurity handling in high performance stellarator/heliotron plasmas
journal, April 2009


Observation of an impurity hole in a plasma with an ion internal transport barrier in the Large Helical Device
journal, May 2009

  • Ida, K.; Yoshinuma, M.; Osakabe, M.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3111097

Observation of an impurity hole in the Large Helical Device
journal, May 2009


New Advanced Operational Regime on the W7-AS Stellarator
journal, June 2002


Fokker-Planck Equation for an Inverse-Square Force
journal, July 1957

  • Rosenbluth, Marshall N.; MacDonald, William M.; Judd, David L.
  • Physical Review, Vol. 107, Issue 1
  • DOI: 10.1103/PhysRev.107.1

A method for calculating neoclassical transport coefficients with momentum conserving collision operator
journal, November 1992

  • Taguchi, M.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 11
  • DOI: 10.1063/1.860372

How to calculate the neoclassical viscosity, diffusion, and current coefficients in general toroidal plasmas
journal, November 2002

  • Sugama, H.; Nishimura, S.
  • Physics of Plasmas, Vol. 9, Issue 11
  • DOI: 10.1063/1.1512917

Momentum correction techniques for neoclassical transport in stellarators
journal, July 2009

  • Maaßberg, H.; Beidler, C. D.; Turkin, Y.
  • Physics of Plasmas, Vol. 16, Issue 7
  • DOI: 10.1063/1.3175328

Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas
journal, April 2014

  • Landreman, M.; Smith, H. M.; Mollén, A.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4870077

On neoclassical impurity transport in stellarator geometry
journal, June 2013


Plasma transport coefficients for nonsymmetric toroidal confinement systems
journal, September 1986

  • Hirshman, S. P.; Shaing, K. C.; van Rij, W. I.
  • Physics of Fluids, Vol. 29, Issue 9
  • DOI: 10.1063/1.865495

Variational bounds for transport coefficients in three‐dimensional toroidal plasmas
journal, March 1989

  • van Rij, W. I.; Hirshman, S. P.
  • Physics of Fluids B: Plasma Physics, Vol. 1, Issue 3
  • DOI: 10.1063/1.859116

Pfirsch–Schlüter impurity transport in stellarators
journal, July 2010

  • Braun, S.; Helander, P.
  • Physics of Plasmas, Vol. 17, Issue 7
  • DOI: 10.1063/1.3458901

On the bootstrap current in stellarators and tokamaks
journal, September 2011

  • Helander, P.; Geiger, J.; Maaßberg, H.
  • Physics of Plasmas, Vol. 18, Issue 9
  • DOI: 10.1063/1.3633940

Local and global Fokker–Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal
journal, October 2012


Effects of Net Currents on the Magnetic Configuration of W7-X
journal, July 2010

  • Geiger, J.; Beidler, C. D.; Drevlak, M.
  • Contributions to Plasma Physics, Vol. 50, Issue 8
  • DOI: 10.1002/ctpp.200900028

Aspects of steady-state operation of the Wendelstein 7-X stellarator
journal, December 2012


Design and Analysis of Divertor Scraper Elements for the W7-X Stellarator
journal, March 2014

  • Lore, Jeremy D.; Andreeva, Tamara; Boscary, Jean
  • IEEE Transactions on Plasma Science, Vol. 42, Issue 3
  • DOI: 10.1109/TPS.2014.2303649

Neoclassical transport simulations for stellarators
journal, February 2011

  • Turkin, Y.; Beidler, C. D.; Maaßberg, H.
  • Physics of Plasmas, Vol. 18, Issue 2
  • DOI: 10.1063/1.3553025

On collisional impurity transport in nonaxisymmetric plasmas
journal, November 2014


New velocity-space discretization for continuum kinetic calculations and Fokker–Planck collisions
journal, June 2013


Works referencing / citing this record:

Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee
journal, February 2018


The importance of the classical channel in the impurity transport of optimized stellarators
journal, July 2019


Flux-surface variations of the electrostatic potential in stellarators: impact on the radial electric field and neoclassical impurity transport
journal, June 2018

  • Mollén, A.; Landreman, M.; Smith, H. M.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 8
  • DOI: 10.1088/1361-6587/aac700

Impact of main ion pressure anisotropy on stellarator impurity transport
journal, December 2019


Impact of main ion pressure anisotropy on stellarator impurity transport
text, January 2019