skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

Authors:
 [1];  [2]; ORCiD logo [1];  [1]; ORCiD logo [1];  [3]
  1. School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China, Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China
  2. School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
  3. LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, China
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1226394
Grant/Contract Number:  
AC02-09CH11466
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Name: Physics of Plasmas Journal Volume: 22 Journal Issue: 11; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Xiao, Jianyuan, Qin, Hong, Liu, Jian, He, Yang, Zhang, Ruili, and Sun, Yajuan. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems. United States: N. p., 2015. Web. doi:10.1063/1.4935904.
Xiao, Jianyuan, Qin, Hong, Liu, Jian, He, Yang, Zhang, Ruili, & Sun, Yajuan. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems. United States. doi:https://doi.org/10.1063/1.4935904
Xiao, Jianyuan, Qin, Hong, Liu, Jian, He, Yang, Zhang, Ruili, and Sun, Yajuan. Wed . "Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems". United States. doi:https://doi.org/10.1063/1.4935904.
@article{osti_1226394,
title = {Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems},
author = {Xiao, Jianyuan and Qin, Hong and Liu, Jian and He, Yang and Zhang, Ruili and Sun, Yajuan},
abstractNote = {},
doi = {10.1063/1.4935904},
journal = {Physics of Plasmas},
number = 11,
volume = 22,
place = {United States},
year = {2015},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: https://doi.org/10.1063/1.4935904

Save / Share:

Works referenced in this record:

Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields
journal, March 2014

  • Zhang, Ruili; Liu, Jian; Tang, Yifa
  • Physics of Plasmas, Vol. 21, Issue 3
  • DOI: 10.1063/1.4867669

Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry
journal, April 2009

  • Qin, Hong; Guan, Xiaoyin; Tang, William M.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3099055

Gauge properties of the guiding center variational symplectic integrator
journal, May 2012

  • Squire, J.; Qin, H.; Tang, W. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4714608

Development of variational guiding center algorithms for parallel calculations in experimental magnetic equilibria
journal, April 2015


Hamiltonian splitting for the Vlasov–Maxwell equations
journal, February 2015

  • Crouseilles, Nicolas; Einkemmer, Lukas; Faou, Erwan
  • Journal of Computational Physics, Vol. 283
  • DOI: 10.1016/j.jcp.2014.11.029

A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system
journal, October 2013

  • Xiao, Jianyuan; Liu, Jian; Qin, Hong
  • Physics of Plasmas, Vol. 20, Issue 10
  • DOI: 10.1063/1.4826218

Comments on: The Maxwell-Vlasov equations as a continuous hamiltonian system
journal, November 1981


The Maxwell-Vlasov equations as a continuous hamiltonian system
journal, December 1980


Comment on “Symplectic integration of magnetic systems” by Stephen D. Webb [J. Comput. Phys. 270 (2014) 570–576]
journal, February 2015


VORPAL: a versatile plasma simulation code
journal, May 2004


A Can0nical Integrati0n Technique
journal, August 1983


Variational formulation of macro-particle plasma simulation algorithms
journal, May 2014

  • Shadwick, B. A.; Stamm, A. B.; Evstatiev, E. G.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874338

Comment on “Hamiltonian splitting for the Vlasov–Maxwell equations”
journal, September 2015


A symplectic integration algorithm for separable Hamiltonian functions
journal, January 1991


Geometric Numerical Integration
book, January 2002

  • Hairer, Ernst; Wanner, Gerhard; Lubich, Christian
  • Springer Series in Computational Mathematics
  • DOI: 10.1007/978-3-662-05018-7

Numerical study on Landau damping
journal, October 2001


Fourth-order symplectic integration
journal, May 1990


Hamiltonian gyrokinetic Vlasov–Maxwell system
journal, September 2015


Discrete mechanics and variational integrators
journal, May 2001


Collisionless Damping of Nonlinear Plasma Oscillations
journal, January 1965


Variational symplectic algorithm for guiding center dynamics in the inner magnetosphere
journal, May 2011

  • Li, Jinxing; Qin, Hong; Pu, Zuyin
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3589275

Why is Boris algorithm so good?
journal, August 2013

  • Qin, Hong; Zhang, Shuangxi; Xiao, Jianyuan
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4818428

Comment on “Symplectic integration of magnetic systems”: A proof that the Boris algorithm is not variational
journal, November 2015


Volume-preserving algorithm for secular relativistic dynamics of charged particles
journal, April 2015

  • Zhang, Ruili; Liu, Jian; Qin, Hong
  • Physics of Plasmas, Vol. 22, Issue 4
  • DOI: 10.1063/1.4916570

Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves
journal, September 2015

  • Xiao, Jianyuan; Liu, Jian; Qin, Hong
  • Physics of Plasmas, Vol. 22, Issue 9
  • DOI: 10.1063/1.4930118

Long-Time Behavior of Nonlinear Landau Damping
journal, October 1997


Symplectic integration of Hamiltonian systems
journal, May 1990


Field theory and weak Euler-Lagrange equation for classical particle-field systems
journal, October 2014


On Landau Damping
journal, January 1961


Conservative semi-Lagrangian schemes for Vlasov equations
journal, March 2010

  • Crouseilles, Nicolas; Mehrenberger, Michel; Sonnendrücker, Eric
  • Journal of Computational Physics, Vol. 229, Issue 6
  • DOI: 10.1016/j.jcp.2009.11.007

Variational integration for ideal magnetohydrodynamics with built-in advection equations
journal, October 2014

  • Zhou, Yao; Qin, Hong; Burby, J. W.
  • Physics of Plasmas, Vol. 21, Issue 10
  • DOI: 10.1063/1.4897372

Application of the phase space action principle to finite-size particle plasma simulations in the drift-kinetic approximation
journal, November 2014


Variational formulation of particle algorithms for kinetic plasma simulations
journal, July 2013


Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
journal, August 2012

  • Squire, J.; Qin, H.; Tang, W. M.
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4742985

Plasma Physics via Computer Simulation
book, January 1991


Geometric gyrokinetic theory for edge plasmas
journal, May 2007

  • Qin, H.; Cohen, R. H.; Nevins, W. M.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2472596

Volume-preserving algorithms for charged particle dynamics
journal, January 2015


On Landau damping
journal, January 2011


Symplectic and energy-conserving algorithms for solving magnetic field trajectories
journal, June 2008


The Hamiltonian structure of the Maxwell-Vlasov equations
journal, March 1982