DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Eliminating Voltage Decay of Lithium-Rich Li1.14Mn0.54Ni0.14Co0.14O2 Cathodes by Controlling the Electrochemical Process

Abstract

Lithium-rich material owns a particularly high capacity owing to the activation of electrochemical inactive Li2MnO3 phase. But at the same time, MnO2 phase formed after Li2MnO3 activation confronts a severe problem of converting to spinel phase, and resulting in voltage decay. To our knowledge, this phenomenon is inherent property of layered manganese oxide materials and can hardly be overcome. Based on this, unlike previous reports, herein we design a method for the first time to accelerate the phase transformation by tuning the charge upper-limit voltage at a high value, so the phase transformation process can be finished in a few cycles. Then material structure remains stable while cycling at a low upper-limit voltage. By this novel method voltage decay is eliminated significantly.

Authors:
 [1];  [2];  [3];  [3];  [1];  [1];  [1];  [1];  [1]
  1. Chinese Academy of Sciences (CAS), Zhejiang (China). Ningbo Inst. of Materials Technology and Engineering
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Dept.
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1226022
Report Number(s):
BNL-108189-2015-JA
Journal ID: ISSN 1521-3765; R&D Project: MA015MACA; KC0201010
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry - A European Journal (Online)
Additional Journal Information:
Journal Name: Chemistry - A European Journal (Online); Journal Volume: 21; Journal Issue: 20; Journal ID: ISSN 1521-3765
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Wei, Z., Zhu, Y., Zhang, W., Wang, F., Zhang, Q., Qiu, B., Han, S., Xia, Y., and Liu, Z. Eliminating Voltage Decay of Lithium-Rich Li1.14Mn0.54Ni0.14Co0.14O2 Cathodes by Controlling the Electrochemical Process. United States: N. p., 2015. Web. doi:10.1002/chem.201406641.
Wei, Z., Zhu, Y., Zhang, W., Wang, F., Zhang, Q., Qiu, B., Han, S., Xia, Y., & Liu, Z. Eliminating Voltage Decay of Lithium-Rich Li1.14Mn0.54Ni0.14Co0.14O2 Cathodes by Controlling the Electrochemical Process. United States. https://doi.org/10.1002/chem.201406641
Wei, Z., Zhu, Y., Zhang, W., Wang, F., Zhang, Q., Qiu, B., Han, S., Xia, Y., and Liu, Z. Fri . "Eliminating Voltage Decay of Lithium-Rich Li1.14Mn0.54Ni0.14Co0.14O2 Cathodes by Controlling the Electrochemical Process". United States. https://doi.org/10.1002/chem.201406641. https://www.osti.gov/servlets/purl/1226022.
@article{osti_1226022,
title = {Eliminating Voltage Decay of Lithium-Rich Li1.14Mn0.54Ni0.14Co0.14O2 Cathodes by Controlling the Electrochemical Process},
author = {Wei, Z. and Zhu, Y. and Zhang, W. and Wang, F. and Zhang, Q. and Qiu, B. and Han, S. and Xia, Y. and Liu, Z.},
abstractNote = {Lithium-rich material owns a particularly high capacity owing to the activation of electrochemical inactive Li2MnO3 phase. But at the same time, MnO2 phase formed after Li2MnO3 activation confronts a severe problem of converting to spinel phase, and resulting in voltage decay. To our knowledge, this phenomenon is inherent property of layered manganese oxide materials and can hardly be overcome. Based on this, unlike previous reports, herein we design a method for the first time to accelerate the phase transformation by tuning the charge upper-limit voltage at a high value, so the phase transformation process can be finished in a few cycles. Then material structure remains stable while cycling at a low upper-limit voltage. By this novel method voltage decay is eliminated significantly.},
doi = {10.1002/chem.201406641},
journal = {Chemistry - A European Journal (Online)},
number = 20,
volume = 21,
place = {United States},
year = {Fri Mar 27 00:00:00 EDT 2015},
month = {Fri Mar 27 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanomaterialien für wiederaufladbare Lithiumbatterien
journal, April 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • Angewandte Chemie, Vol. 120, Issue 16
  • DOI: 10.1002/ange.200702505

Layered Cathode Materials Li[Ni[sub x]Li[sub (1/3−2x/3)]Mn[sub (2/3−x/3)]]O[sub 2] for Lithium-Ion Batteries
journal, January 2001

  • Lu, Zhonghua; MacNeil, D. D.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 11
  • DOI: 10.1149/1.1407994

CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries
journal, October 2013


Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte
journal, May 2008


Li(MnxFe1−x)PO4/C (x = 0.5, 0.75 and 1) nanoplates for lithium storage application
journal, January 2011

  • Saravanan, Kuppan; Ramar, Vishwanathan; Balaya, Palani
  • Journal of Materials Chemistry, Vol. 21, Issue 38
  • DOI: 10.1039/c1jm11541c

Synthesis and electrochemical properties of Li[Li0.07Ni0.1Co0.6Mn0.23]O2 as a possible cathode material for lithium-ion batteries
journal, November 2006


Surface Modification of Li-Excess Mn-based Cathode Materials
journal, January 2010

  • Yu, Denis Y. W.; Yanagida, Katsunori; Nakamura, Hiroshi
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3479382

LixNi0.25Mn0.75Oy (0.5 ≤x≤ 2, 2 ≤y≤ 2.75) compounds for high-energy lithium-ion batteries
journal, January 2009

  • Deng, Haixia; Belharouak, Ilias; Sun, Yang-Kook
  • Journal of Materials Chemistry, Vol. 19, Issue 26
  • DOI: 10.1039/b904098f

Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries
journal, January 2013

  • Yu, Seung-Ho; Yoon, Taeho; Mun, Junyoung
  • Journal of Materials Chemistry A, Vol. 1, Issue 8
  • DOI: 10.1039/c2ta00309k

Lattice vibrations of materials for lithium rechargeable batteries. VI: Ordered spinels
journal, June 2006

  • Julien, C. M.; Gendron, F.; Amdouni, A.
  • Materials Science and Engineering: B, Vol. 130, Issue 1-3
  • DOI: 10.1016/j.mseb.2006.02.003

Lattice Dynamics and Vibrational Spectra of Lithium Manganese Oxides:  A Computer Simulation and Spectroscopic Study
journal, June 1999

  • Ammundsen, Brett; Burns, Gary R.; Islam, M. Saiful
  • The Journal of Physical Chemistry B, Vol. 103, Issue 25
  • DOI: 10.1021/jp984398l

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction
journal, May 2013


Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery
journal, January 2010

  • Hong, Jihyun; Seo, Dong-Hwa; Kim, Sung-Wook
  • Journal of Materials Chemistry, Vol. 20, Issue 45
  • DOI: 10.1039/c0jm01971b

Nanomaterials for Rechargeable Lithium Batteries
journal, April 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • Angewandte Chemie International Edition, Vol. 47, Issue 16, p. 2930-2946
  • DOI: 10.1002/anie.200702505

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Countering the Voltage Decay in High Capacity xLi 2 MnO 3 •(1–x)LiMO 2 Electrodes (M=Mn, Ni, Co) for Li + -Ion Batteries
journal, January 2012

  • Croy, Jason R.; Kim, Donghan; Balasubramanian, Mahalingam
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.080206jes

Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials
journal, October 2013


The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material
journal, January 2013


Understanding the Crystal Structure of Layered LiNi[sub 0.5]Mn[sub 0.5]O[sub 2] by Electron Diffraction and Powder Diffraction Simulation
journal, January 2004

  • Meng, Y. S.; Ceder, G.; Grey, C. P.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 6
  • DOI: 10.1149/1.1718211

High-energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries
journal, January 2012

  • Yu, Haijun; Kim, Hyunjeong; Wang, Yarong
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 18
  • DOI: 10.1039/c2cp40745k

The Effects of Acid Treatment on the Electrochemical Properties of 0.5 Li2MnO3 ∙ 0.5 LiNi0.44Co0.25Mn0.31O2 Electrodes in Lithium Cells
journal, January 2006

  • Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.
  • Journal of The Electrochemical Society, Vol. 153, Issue 6, p. A1186-A1192
  • DOI: 10.1149/1.2194764

Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries
journal, December 2012

  • Gu, Meng; Belharouak, Ilias; Zheng, Jianming
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305065u

High-energy and high-power Li-rich nickel manganese oxide electrode materials
journal, November 2010

  • Kim, Donghan; Kang, Sun-Ho; Balasubramanian, Mahalingam
  • Electrochemistry Communications, Vol. 12, Issue 11, p. 1618-1621
  • DOI: 10.1016/j.elecom.2010.09.009

Works referencing / citing this record:

Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries
journal, April 2017


Phase Transformation of Lithium‐rich Oxide Cathode in Full Cell and its Suppression by Solid Electrolyte Interphase on Graphite Anode
journal, March 2020

  • Tu, Wenqiang; Wen, Yucheng; Ye, Changchun
  • ENERGY & ENVIRONMENTAL MATERIALS, Vol. 3, Issue 1
  • DOI: 10.1002/eem2.12034

High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/c6cs00875e

Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization
journal, December 2016

  • Zheng, Jianming; Myeong, Seungjun; Cho, Woongrae
  • Advanced Energy Materials, Vol. 7, Issue 6
  • DOI: 10.1002/aenm.201601284

Weakened Capacity Fading of Li-Rich Cathode via Aqueous Binder for Advanced Lithium Ion Batteries
journal, January 2019

  • Yu, Meng; Wang, Yong; Wang, Zhen-yu
  • Journal of The Electrochemical Society, Vol. 166, Issue 16
  • DOI: 10.1149/2.0601916jes