skip to main content


Title: Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes

Entropy profiles of lithium cobalt oxide (LiCoO2) electrodes were measured at various stages in the cycle life to examine performance degradation and cycling-induced changes, or lack thereof, in thermodynamics. LiCoO 2 electrodes were cycled at C/2 rate in half-cells (vs. lithium anodes) up to 20 cycles or C/5 rate in full cells (vs. MCMB anodes) up to 500 cycles. The electrodes were then subjected to entropy measurements (∂E/∂T, where E is open-circuit potential and T is temperature) in half-cells at regular intervals over the approximate range 0.5 ≤ x ≤ 1 in LixCoO 2. Despite significant losses in capacity upon cycling, neither cycling rate resulted in any change to the overall shape of the entropy profile relative to an uncycled electrode, indicating retention of the basic LiCoO 2 structure, lithium insertion mechanism, and thermodynamics. This confirms that cycling-induced performance degradation in LiCoO 2 electrodes is primarily caused by kinetic barriers that increase with cycling. In the case of electrodes cycled at C/5, there was a subtle, quantitative, and gradual change in the entropy profile in the narrow potential range of the hexagonal-to-monoclinic phase transition. The observed change is indicative of a decrease in the intralayer lithium ordering that occurs atmore » these potentials, and it demonstrates that a cyclinginduced structural disorder accompanies the kinetic degradation mechanisms.« less
 [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0013-4651; 537664
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 162; Journal Issue: 3; Journal ID: ISSN 0013-4651
The Electrochemical Society
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
OSTI Identifier: