skip to main content


Title: Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed Cu 64.5Zr 35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. As a result, by mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due tomore » the extended regions of disrupted ISRO and more importantly BMRO.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Iowa State Univ., Ames, IA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1098-0121; PRBMDO
Grant/Contract Number:
AC02-07CH11358; CHE1111500; AC02–07CH11358
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 90; Journal Issue: 17; Journal ID: ISSN 1098-0121
American Physical Society (APS)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1181029