DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

Abstract

In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improves their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO2 shell.

Authors:
 [1];  [1];  [2];  [3];  [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. North Carolina State Univ., Raleigh, NC (United States)
  3. Vanderbilt Univ., Nashville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1225427
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Name: Journal of Physical Chemistry. C; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Feygenson, Mikhail, Formo, Eric V., Freeman, Katherine, Schieber, Natalie P., Gai, Zheng, and Rondinone, Adam J. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles. United States: N. p., 2015. Web. doi:10.1021/acs.jpcc.5b09046.
Feygenson, Mikhail, Formo, Eric V., Freeman, Katherine, Schieber, Natalie P., Gai, Zheng, & Rondinone, Adam J. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles. United States. https://doi.org/10.1021/acs.jpcc.5b09046
Feygenson, Mikhail, Formo, Eric V., Freeman, Katherine, Schieber, Natalie P., Gai, Zheng, and Rondinone, Adam J. Mon . "Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles". United States. https://doi.org/10.1021/acs.jpcc.5b09046. https://www.osti.gov/servlets/purl/1225427.
@article{osti_1225427,
title = {Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles},
author = {Feygenson, Mikhail and Formo, Eric V. and Freeman, Katherine and Schieber, Natalie P. and Gai, Zheng and Rondinone, Adam J.},
abstractNote = {In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improves their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO2 shell.},
doi = {10.1021/acs.jpcc.5b09046},
journal = {Journal of Physical Chemistry. C},
number = ,
volume = ,
place = {United States},
year = {Mon Nov 02 00:00:00 EST 2015},
month = {Mon Nov 02 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Exchange Anisotropy—A Review
journal, March 1962

  • Meiklejohn, W. H.
  • Journal of Applied Physics, Vol. 33, Issue 3
  • DOI: 10.1063/1.1728716

Exchange bias in nanostructures
journal, December 2005


Exchange bias
journal, February 1999


Beating the superparamagnetic limit with exchange bias
journal, June 2003

  • Skumryev, Vassil; Stoyanov, Stoyan; Zhang, Yong
  • Nature, Vol. 423, Issue 6942
  • DOI: 10.1038/nature01687

Exchange anisotropy — a review
journal, October 1999


Manipulating the Magnetic Structure of Co Core/CoO Shell Nanoparticles: Implications for Controlling the Exchange Bias
journal, September 2008


Controlling the exchange bias field in Co core/CoO shell nanoparticles
journal, May 2010


Control of the Oxygen and Cobalt Atoms Diffusion through Co Nanoparticles Differing by Their Crystalline Structure and Size
journal, December 2014

  • Yang, Zhijie; Yang, Nailiang; Yang, Jianhui
  • Advanced Functional Materials, Vol. 25, Issue 6
  • DOI: 10.1002/adfm.201403617

Exchange bias and nanoparticle magnetic stability in Co-CoO composites
journal, March 2006


Ferromagnetic cobalt nanocrystals achieved by soft annealing approach—From individual behavior to mesoscopic organized properties
journal, May 2007

  • Petit, C.; Wang, Z. L.; Pileni, M. P.
  • Journal of Magnetism and Magnetic Materials, Vol. 312, Issue 2
  • DOI: 10.1016/j.jmmm.2006.10.1096

Preparation and Properties of Uniform Coated Inorganic Colloidal Particles
journal, October 1993

  • Ohmori, Masahiro; Matijević, Egon
  • Journal of Colloid and Interface Science, Vol. 160, Issue 2
  • DOI: 10.1006/jcis.1993.1398

Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core
journal, January 1994

  • Philipse, Albert P.; van Bruggen, Michel P. B.; Pathmamanoharan, Chellapah
  • Langmuir, Vol. 10, Issue 1
  • DOI: 10.1021/la00013a014

A Novel Two-Step Silica-Coating Process for Engineering Magnetic Nanocomposites
journal, December 1998

  • Liu, Qingxia; Xu, Zhenghe; Finch, J. A.
  • Chemistry of Materials, Vol. 10, Issue 12
  • DOI: 10.1021/cm980370a

A level set based approach for modeling oxidation processes of ligand stabilized metallic nanoparticles
journal, March 2010

  • Auge, A.; Weddemann, A.; Vogel, B.
  • Applied Physics Letters, Vol. 96, Issue 9
  • DOI: 10.1063/1.3353957

The influence of various coatings on the electronic, magnetic, and geometric properties of cobalt nanoparticles (invited)
journal, May 2005

  • Hormes, J.; Modrow, H.; Bönnemann, H.
  • Journal of Applied Physics, Vol. 97, Issue 10
  • DOI: 10.1063/1.1855191

Array of cobalt nanoparticles in silica: Synthesis and effects of thermal annealing
journal, May 2006

  • Jacobsohn, L. G.; Thompson, J. D.; Misra, A.
  • Journal of Applied Physics, Vol. 99, Issue 10
  • DOI: 10.1063/1.2199982

Preparation and Properties of Silica-Coated Cobalt Nanoparticles
journal, July 2003

  • Kobayashi, Yoshio; Horie, Mitsuru; Konno, Mikio
  • The Journal of Physical Chemistry B, Vol. 107, Issue 30
  • DOI: 10.1021/jp027759c

Structure and magnetic properties of SiO2-coated Co nanoparticles
journal, July 2002

  • Wu, Mingzhong; Zhang, Y. D.; Hui, S.
  • Journal of Applied Physics, Vol. 92, Issue 1
  • DOI: 10.1063/1.1483393

Size effect on the crystal phase of cobalt fine particles
journal, December 1997


Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy
journal, March 2004

  • Puntes, Victor F.; Gorostiza, Pau; Aruguete, Deborah M.
  • Nature Materials, Vol. 3, Issue 4
  • DOI: 10.1038/nmat1094

Coalescence aspects of cobalt nanoparticles during in situ high-temperature annealing
journal, January 2006

  • Palasantzas, G.; Vystavel, T.; Koch, S. A.
  • Journal of Applied Physics, Vol. 99, Issue 2
  • DOI: 10.1063/1.2163983

Molecular Rulers for Scaling Down Nanostructures
journal, February 2001


The Oxidation of Cobalt Nanoparticles into Kirkendall-Hollowed CoO and Co 3 O 4 : The Diffusion Mechanisms and Atomic Structural Transformations
journal, June 2013

  • Ha, Don-Hyung; Moreau, Liane M.; Honrao, Shreyas
  • The Journal of Physical Chemistry C, Vol. 117, Issue 27
  • DOI: 10.1021/jp402939e

Controlled growth of monodisperse silica spheres in the micron size range
journal, January 1968

  • Stöber, Werner; Fink, Arthur; Bohn, Ernst
  • Journal of Colloid and Interface Science, Vol. 26, Issue 1, p. 62-69
  • DOI: 10.1016/0021-9797(68)90272-5

PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/S0021889804011744

PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS
journal, September 2012

  • Neuefeind, Jörg; Feygenson, Mikhail; Carruth, John
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 287
  • DOI: 10.1016/j.nimb.2012.05.037

In Situ Magnetic Study of the Low-Temperature Oxidation of Carbon-Supported Cobalt Nanoparticles
journal, April 2007

  • Chernavskii, P. A.; Pankina, G. V.; Chernavskii, A. P.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 15
  • DOI: 10.1021/jp065162h

Reduction and analysis of SANS and USANS data using IGOR Pro
journal, November 2006


Analysis of small angle neutron scattering spectra from polydisperse interacting colloids
journal, September 1983

  • Kotlarchyk, Michael; Chen, Sow‐Hsin
  • The Journal of Chemical Physics, Vol. 79, Issue 5
  • DOI: 10.1063/1.446055

SAXS study of chain-like structures formed by magnetic nanoparticles
journal, September 2007

  • Bonini, Massimo; Fratini, Emiliano; Baglioni, Piero
  • Materials Science and Engineering: C, Vol. 27, Issue 5-8
  • DOI: 10.1016/j.msec.2006.09.002

In situ SAXS studies of the morphological changes of an alumina–zirconia–silicate ceramic during its formation
journal, July 2006

  • Le Messurier, Daniel; Winter, Rudolf; Martin, Christopher M.
  • Journal of Applied Crystallography, Vol. 39, Issue 4
  • DOI: 10.1107/S0021889806019637

Self-assembly of magnetic nanoparticles into complex superstructures: Spokes and spirals
journal, November 2005

  • Neto, Chiara; Bonini, Massimo; Baglioni, Piero
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 269, Issue 1-3
  • DOI: 10.1016/j.colsurfa.2005.06.072

Magnetic properties of single domain ferromagnetic particles
journal, November 1983


Enhanced magnetization of nanoscale colloidal cobalt particles
journal, May 1995


Magnetic nanoparticles
journal, October 1999


Giant exchange bias and the vertical shifts of hysteresis loops in γ-Fe2O3-coated Fe nanoparticles
journal, May 2004

  • Zheng, R. K.; Wen, G. H.; Fung, K. K.
  • Journal of Applied Physics, Vol. 95, Issue 9
  • DOI: 10.1063/1.1687987

Surface Spin Disorder in NiFe 2 O 4 Nanoparticles
journal, July 1996


Correlation between antiferromagnetic interface coupling and positive exchange bias
journal, January 2000


Crystallographic symmetry and magnetic structure of CoO
journal, July 2001


Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction
journal, August 2004


Electronic and magnetic structure of bulk cobalt: The α, β, and ε-phases from density functional theory calculations
journal, July 2010

  • de la Peña O’Shea, Víctor Antonio; Moreira, Iberio de P. R.; Roldán, Alberto
  • The Journal of Chemical Physics, Vol. 133, Issue 2
  • DOI: 10.1063/1.3458691

Structure and magnetic properties of sputtered FCC Co(111) films grown on a glass substrate
journal, August 1998


Effect of Grain Size on the Crystal Structure of Cobalt
journal, June 1954


X-Ray Determination of Electron-Density Distributions in Oxides, MgO, MnO, CoO, and NiO, and Atomic Scattering Factors of their Constituent Atoms
journal, January 1979

  • Sasaki, Satoshi; Fujino, Kiyoshi; TakÉUchi, Yoshio
  • Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, Vol. 55, Issue 2
  • DOI: 10.2183/pjab.55.43

Finite size effects of nanoparticles on the atomic pair distribution functions
journal, October 2006

  • Kodama, Katsuaki; Iikubo, Satoshi; Taguchi, Tomitsugu
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 62, Issue 6, p. 444-453
  • DOI: 10.1107/S0108767306034635

Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect
journal, April 2004


Hollow Nanocrystals through the Nanoscale Kirkendall Effect
journal, December 2012

  • Wang, Wenshou; Dahl, Michael; Yin, Yadong
  • Chemistry of Materials, Vol. 25, Issue 8
  • DOI: 10.1021/cm3030928

Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals
journal, July 2006

  • Yin, Y.; Erdonmez, C. K.; Cabot, A.
  • Advanced Functional Materials, Vol. 16, Issue 11
  • DOI: 10.1002/adfm.200600256

Synthesis and Characterization of CoO, Co 3 O 4 , and Mixed Co/CoO Nanoparticules
journal, October 1999

  • Verelst, Marc; Ely, Teyeb Ould; Amiens, Catherine
  • Chemistry of Materials, Vol. 11, Issue 10
  • DOI: 10.1021/cm991003h

Ultrafine particles of Fe, Co, and Ni ferromagnetic metals
journal, April 1991

  • Gong, Wei; Li, Hua; Zhao, Zhongren
  • Journal of Applied Physics, Vol. 69, Issue 8
  • DOI: 10.1063/1.348144

Properties of highly crystalline NiO and Ni nanoparticles prepared by high-temperature oxidation and reduction
journal, January 2010


Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations
journal, May 2005

  • Sushko, Peter V.; Mukhopadhyay, Sanghamitra; Mysovsky, Andrey S.
  • Journal of Physics: Condensed Matter, Vol. 17, Issue 21
  • DOI: 10.1088/0953-8984/17/21/007

Simulations of the structure and properties of amorphous silica surfaces
journal, July 2001


Works referencing / citing this record:

Exchange Bias Enhancement and Magnetic Proximity Effect in FeVO4-Fe3O4 Nanoparticles
journal, March 2019

  • Abdelhamid, Ehab; Laha, Suvra S.; Dixit, Ambesh
  • Journal of Electronic Materials, Vol. 48, Issue 5
  • DOI: 10.1007/s11664-019-07083-z